摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose

中文名称
——
中文别名
——
英文名称
α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose
英文别名
6-O-α-isomaltosylmaltose;α-D-Glc-(1->6)-α-D-Glc-(1->6)-α-D-Glc-(1->4)-D-Glc;Isomaltotriosylglucose;(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[[(2R,3S,4S,5R,6R)-3,4,5-trihydroxy-6-[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]oxan-2-yl]methoxy]oxane-3,4,5-triol
α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose化学式
CAS
——
化学式
C24H42O21
mdl
——
分子量
666.585
InChiKey
ATSPLDSNUFFQBC-WNPOOKDXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -9
  • 重原子数:
    45
  • 可旋转键数:
    10
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    348
  • 氢给体数:
    14
  • 氢受体数:
    21

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose 在 Aspergillus niger amyloglucosidase 作用下, 反应 6.0h, 生成 麦芽糖
    参考文献:
    名称:
    Bioengineering of Leuconostoc mesenteroides Glucansucrases That Gives Selected Bond Formation for Glucan Synthesis and/or Acceptor-Product Synthesis
    摘要:
    The variations in glucosidic linkage specificity observed in products of different glucansucrases appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. Various amino acid mutations near active sites of DSRBCB4 dextransucrase from Leuconostoc mesenteroides B-1299CB4 were constructed. A triple amino acid mutation (S642N/E643N/V644S) immediately next to the catalytic D641 (putative transition state stabilizing residue) converted DSRBCB4 enzyme from the synthesis of mainly alpha-(1 -> 6) dextran to the synthesis of alpha-(1 -> 6) glucan containing branches of alpha-(1 -> 3) and alpha-(1 -> 4) glucosidic linkages. The subsequent introduction of mutation V532P/V535I, located next to the catalytic D530 (nucleophile), resulted in the synthesis of an alpha-glucan containing increased branched alpha-(1 -> 4) glucosidic linkages (approximately 11%). The results indicate that mutagenesis can guide glucansucrase toward the synthesis of various oligosaccharides or novel polysaccharides with completely altered linkages without compromising high transglycosylation activity and efficiency.
    DOI:
    10.1021/jf104629g
  • 作为产物:
    描述:
    panose 在 Aspergillus niger amyloglucosidase 、 Leuconostoc mesenteroides B-1299CB4 dextransucrase DSRBCB4 、 calcium chloride 作用下, 反应 3.0h, 生成 α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->6)-α-D-glucopyranosyl-(1->4)-D-glucopyranose
    参考文献:
    名称:
    Bioengineering of Leuconostoc mesenteroides Glucansucrases That Gives Selected Bond Formation for Glucan Synthesis and/or Acceptor-Product Synthesis
    摘要:
    The variations in glucosidic linkage specificity observed in products of different glucansucrases appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. Various amino acid mutations near active sites of DSRBCB4 dextransucrase from Leuconostoc mesenteroides B-1299CB4 were constructed. A triple amino acid mutation (S642N/E643N/V644S) immediately next to the catalytic D641 (putative transition state stabilizing residue) converted DSRBCB4 enzyme from the synthesis of mainly alpha-(1 -> 6) dextran to the synthesis of alpha-(1 -> 6) glucan containing branches of alpha-(1 -> 3) and alpha-(1 -> 4) glucosidic linkages. The subsequent introduction of mutation V532P/V535I, located next to the catalytic D530 (nucleophile), resulted in the synthesis of an alpha-glucan containing increased branched alpha-(1 -> 4) glucosidic linkages (approximately 11%). The results indicate that mutagenesis can guide glucansucrase toward the synthesis of various oligosaccharides or novel polysaccharides with completely altered linkages without compromising high transglycosylation activity and efficiency.
    DOI:
    10.1021/jf104629g
点击查看最新优质反应信息

文献信息

  • Acceptor reactions of alternansucrase from Leuconostoc mesenteroides NRRL B-1355
    作者:Gregory L. Côté、John F. Fobyt
    DOI:10.1016/0008-6215(82)85013-1
    日期:1982.12
    Extracellular glucansucrases from various bacterial sources, including Leuconostoc mesenteroides, have been shown to catalyze the transfer of glucosyl groups from sucrose to low-molecular-weight acceptor sugars, forming a series of oligosaccharides. An extracellular glucansucrase recently isolated from Leuconostoc mesenteroides NRRL B-1355 synthesizes a polysaccharide consisting of alternating α-(1→6)-
    来自各种细菌来源的细胞外葡聚糖蔗糖,包括肠间叶亮葡菌,已显示出可将葡萄糖基团从蔗糖转移至低分子量受体糖,从而形成一系列寡糖。最近从肠膜肠球菌NRNR B-1355中分离出的一种细胞外葡糖苷酶合成了由交替的α-(1→6)-和α-(1→3)连接的d-葡萄糖残基组成的多糖。我们已经发现,在许多低分子量受体糖存在下,这种酶制剂能够形成α-(1→6)-和α-(1→3)-连接的受体产物。d-葡萄糖仅产生异麦芽糖,没有形成黑糖。相似地,甲基α-d-葡萄糖苷,甲基β-d-葡萄糖苷,麦芽糖和黑糖生成了甲基α-异麦芽糖苷,甲基β-异麦芽糖苷,panose和62-O-α-d-葡萄糖基黑麦芽糖,分别。然而,异麦芽糖同时给出了异麦芽三糖和32-O-α-d-葡萄糖基异麦芽糖。这些初始的受体产物也可以充当受体,并且较高dp产物的结构表明,只有当非还原性葡萄糖受体基团通过α-连接时,才形成(1→3)-α-d-糖苷键。 (
  • Bioengineering of Leuconostoc mesenteroides Glucansucrases That Gives Selected Bond Formation for Glucan Synthesis and/or Acceptor-Product Synthesis
    作者:Hee Kyoung Kang、Atsuo Kimura、Doman Kim
    DOI:10.1021/jf104629g
    日期:2011.4.27
    The variations in glucosidic linkage specificity observed in products of different glucansucrases appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. Various amino acid mutations near active sites of DSRBCB4 dextransucrase from Leuconostoc mesenteroides B-1299CB4 were constructed. A triple amino acid mutation (S642N/E643N/V644S) immediately next to the catalytic D641 (putative transition state stabilizing residue) converted DSRBCB4 enzyme from the synthesis of mainly alpha-(1 -> 6) dextran to the synthesis of alpha-(1 -> 6) glucan containing branches of alpha-(1 -> 3) and alpha-(1 -> 4) glucosidic linkages. The subsequent introduction of mutation V532P/V535I, located next to the catalytic D530 (nucleophile), resulted in the synthesis of an alpha-glucan containing increased branched alpha-(1 -> 4) glucosidic linkages (approximately 11%). The results indicate that mutagenesis can guide glucansucrase toward the synthesis of various oligosaccharides or novel polysaccharides with completely altered linkages without compromising high transglycosylation activity and efficiency.
查看更多