摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5S-(α-thymidyl)-5,6-dihydrothymidine | 132576-68-2

中文名称
——
中文别名
——
英文名称
5S-(α-thymidyl)-5,6-dihydrothymidine
英文别名
1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-[[(5S)-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-2,4-dioxo-1,3-diazinan-5-yl]methyl]pyrimidine-2,4-dione
5S-(α-thymidyl)-5,6-dihydrothymidine化学式
CAS
132576-68-2
化学式
C20H28N4O10
mdl
——
分子量
484.463
InChiKey
WCJUEZCRTGBSQU-OCJWLLHGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    155-158 °C
  • 密度:
    1.541±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.4
  • 重原子数:
    34
  • 可旋转键数:
    6
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.7
  • 拓扑面积:
    198
  • 氢给体数:
    6
  • 氢受体数:
    10

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    5S-(α-thymidyl)-5,6-dihydrothymidine 在 Rh/Al2O3 、 (S)-adenosylmethionine 吡啶咪唑 、 DL-dithiothreitol 、 potassium chloride 、 氢氟酸四丁基氟化铵氢气N-乙基异丙基胺lithium diisopropyl amide 作用下, 以 四氢呋喃甲醇正己烷二氯甲烷N,N-二甲基甲酰胺甲苯乙腈 为溶剂, 反应 186.67h, 生成 (5S)-N3(A/B)-di-trimethylsilylethoxymethyl-5-(α-thymidyl)-5,6-dihydrothymidine
    参考文献:
    名称:
    DNA孢子光产物类似物的合成和立体化学分配。
    摘要:
    缺乏详细酶学研究所需的确定底物,严重阻碍了由孢子光产物(SP)裂解酶修复酶进行的DNA修复过程的研究。该问题特别严重,因为修复酶属于强氧敏感性自由基(S)-腺苷甲硫氨酸(SAM)酶,众所周知,这种酶很难处理。我们报告了孢子光产物类似物1 a和1 b的合成,它们具有开放的骨架和非对映异构体。为了解决立体化学分配的问题,制备了另外两个具有封闭主链的衍生物2a和2b。合成2 a / b的关键步骤是基于易位的大环化,可大大提高合成孢子光产物衍生物的构象刚度。环状异构体的NOESY实验提供了清晰的峰间模式,可以明确地分配立体化学。将结果转移到异构体1a和1b的数据中,随后将其用于酶修复研究。这些研究是用来自嗜热脂肪地芽孢杆菌的新型孢子光产物裂解酶修复酶进行的。研究表明,根据我们最近对枯草芽孢杆菌的孢子光产物裂解酶进行的研究,发现只有S异构体1a被识别和修复。现在,制备确定的功能性底物的能力为SP裂解
    DOI:
    10.1002/chem.200600169
  • 作为产物:
    参考文献:
    名称:
    DNA孢子光产物类似物的合成和立体化学分配。
    摘要:
    缺乏详细酶学研究所需的确定底物,严重阻碍了由孢子光产物(SP)裂解酶修复酶进行的DNA修复过程的研究。该问题特别严重,因为修复酶属于强氧敏感性自由基(S)-腺苷甲硫氨酸(SAM)酶,众所周知,这种酶很难处理。我们报告了孢子光产物类似物1 a和1 b的合成,它们具有开放的骨架和非对映异构体。为了解决立体化学分配的问题,制备了另外两个具有封闭主链的衍生物2a和2b。合成2 a / b的关键步骤是基于易位的大环化,可大大提高合成孢子光产物衍生物的构象刚度。环状异构体的NOESY实验提供了清晰的峰间模式,可以明确地分配立体化学。将结果转移到异构体1a和1b的数据中,随后将其用于酶修复研究。这些研究是用来自嗜热脂肪地芽孢杆菌的新型孢子光产物裂解酶修复酶进行的。研究表明,根据我们最近对枯草芽孢杆菌的孢子光产物裂解酶进行的研究,发现只有S异构体1a被识别和修复。现在,制备确定的功能性底物的能力为SP裂解
    DOI:
    10.1002/chem.200600169
点击查看最新优质反应信息

文献信息

  • The spore photoproduct lyase repairs the 5S- and not the 5R-configured spore photoproduct DNA lesion
    作者:Marcus G. Friedel、Olivier Berteau、J. Carsten Pieck、Mohamed Atta、Sandrine Ollagnier-de-Choudens、Marc Fontecave、Thomas Carell
    DOI:10.1039/b514103f
    日期:——
    The spore photoproduct lyase is a Fe-S/AdoMet DNA repair enzyme, which directly repairs spore lesions, induced by UV irradiation of spores, using an unknown radical mechanism. The air sensitive radical SAM enzyme was for the first time challenged with synthetically pure substrates. It was found that the enzyme recognizes a synthetic 5S-configured spore lesion without the central phosphodiester bond
    孢子光产物裂解酶是一种Fe-S / AdoMet DNA修复酶,它利用未知的自由基机理直接修复由孢子的紫外线照射诱导的孢子损伤。空气敏感性自由基SAM酶首次受到合成纯底物的挑战。发现该酶识别没有中央磷酸键的合成的5S-构型的孢子损伤。与5R构型的病变相反,目前的看法不是底物。
  • Photochemical Reactions of Microcrystalline Thymidine
    作者:Yajun Jian、David M. Ames、Hao Ouyang、Lei Li
    DOI:10.1021/ol5036276
    日期:2015.2.20
    Nucleoside/nucleotide/oligonucleotide photoreactions usually result in a number of products simultaneously due to a wide range of conformers existing at a given time. Such a complicated reaction pattern makes it difficult for one to focus on a single DNA photoproduct and elucidate the requirements for its formation. A rare example of thymidine photoreaction in microcrystals is reported, where 5-thyminyl-5,6-dihydrothymine, e.g., the spore photoproduct (SP), is produced as the dominant species in similar to 85% yield. This unprecedented high yield clears the major obstacle for future SP photochemistry studies in detail.
  • An Efficient Deprotection of <i>N</i>-Trimethylsilylethoxymethyl (SEM) Groups From Dinucleosides and Dinucleotides
    作者:Tilak Chandra、William E. Broderick、Joan B. Broderick
    DOI:10.1080/15257771003612847
    日期:2010.2.26
    A convenient and efficient method for deprotection of N-(trimethyl)silylethoxymethyl (SEM) groups from thymidine dinucleoside and dinucleotide has been achieved. The SEM groups were easily removed in excellent yields from protected nucleosides, dinucleosides, and dinucleotides.
  • Shaw, Anthony A.; Cadet, Jean, Journal of the Chemical Society. Perkin transactions II, 1990, # 12, p. 2063 - 2070
    作者:Shaw, Anthony A.、Cadet, Jean
    DOI:——
    日期:——
  • Unusually Large Deuterium Discrimination during Spore Photoproduct Formation
    作者:David M. Ames、Gengjie Lin、Yajun Jian、Jean Cadet、Lei Li
    DOI:10.1021/jo500775b
    日期:2014.6.6
    The deuterium-labeling strategy has been widely used and proved highly effective in mechanistic investigation of chemical and biochemical reactions. However, it is often hampered by the incomplete label transfer, which subsequently obscures the mechanistic conclusion. During the study of photoinduced generation of 5-thyminyl-5,6-dihydrothymine, which is commonly called the spore photoproduct (SP), the Cadet laboratory found an incomplete (similar to 67%) deuterium transfer in SP formation, which contrasts to the exclusive transfer observed by the Li laboratory. Here, we investigated this discrepancy by re-examining the SP formation using d(3)-thymidine. We spiked the d(3)-thymidine with varying amounts of unlabeled thymidine before the SP photochemistry is performed. Strikingly, our data show that the reaction is highly sensitive to the trace protiated thymidine in the starting material. As many as 17-fold enrichment is detected in the formed SP, which may explain the previously observed one-third protium incorporation. Although commercially available deuterated reagents are generally satisfactory as mechanistic probes, our results argue that attention is still needed to the possible interference from the trace protiated impurity, especially when the reaction yield is low and large isotopic discrimination is involved.
查看更多