TAU-PROTEIN TARGETING PROTACS AND ASSOCIATED METHODS OF USE
申请人:Arvinas, Inc.
公开号:US20180125821A1
公开(公告)日:2018-05-10
The present disclosure relates to bifunctional compounds, which find utility as modulators of tau protein. In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a VHL or cereblon ligand which binds to the E3 ubiquitin ligase and on the other end a moiety which binds tau protein, such that tau protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of tau. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of tau protein. Diseases or disorders that result from aggregation or accumulation of tau protein are treated or prevented with compounds and compositions of the present disclosure.
Novel Nickel-Catalyzed Coupling Reaction of Allyl Ethers with Chlorosilanes, Alkyl Tosylates, or Alkyl Halides Promoted by Vinyl-Grignard Reagent Leading to Allylsilanes or Alkenes
method for a carbon-silicon or carbon-carbon bond forming reaction between allyl ethers and chlorosilanes, alkyl tosylates, or alkylhalides giving rise to allylsilanes or alkenes has been developed. This reaction proceeds efficiently at ambient temperature by the combined use of nickel catalysts and a vinyl-Grignard reagent. A possible reaction pathway involving the formation of allyl-Grignard reagents
A rhodium-catalyzed carbonylative transformation of alkyl halides under low pressure of CO has been developed. This robust catalyst system allows using phenols as the carbonylative coupling partner and, meanwhile, exhibits high functional group tolerance and good chemoselectivity. Substrates even with a large steric hindrance group or multiple reaction sites can be selectively converted into the desired
Asymmetric Induction and Enantiodivergence in Catalytic Radical C–H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution
作者:Kai Lang、Sebastian Torker、Lukasz Wojtas、X. Peter Zhang
DOI:10.1021/jacs.9b05850
日期:2019.8.7
proven difficult, the judicious use of HuPhyrin ligand by tuning the bridgelength and other remote non-chiral elements allows for controlling both the degree and sense of asymmetric induction in a systematic manner. This effort leads to successful development of new Co(II)-based catalytic systems that are highly effective for enantiodivergent radical 1,5-C-H amination, producing both enantiomers of the
A cooperative catalytic system involving a Pd/XPhos complex and inexpensive 5-norbornene-2-carbonitrile that enables the use of alkyl tosylates as alkylating reagents in the Catellani reaction has been developed. This mild, scalable protocol is compatible with a range of readily available functionalized aryl iodides and alkyl tosylates, as well as terminating olefins (45 examples, up to 97% yield)