摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,3,6-tri-O-benzyl-4-O-methyl-α,β-D-glucopyranose

中文名称
——
中文别名
——
英文名称
2,3,6-tri-O-benzyl-4-O-methyl-α,β-D-glucopyranose
英文别名
2,3,6-tri-O-benzyl-4-O-methyl-D-glucopyranose;(3R,4S,5R,6R)-5-methoxy-3,4-bis(phenylmethoxy)-6-(phenylmethoxymethyl)oxan-2-ol
2,3,6-tri-O-benzyl-4-O-methyl-α,β-D-glucopyranose化学式
CAS
——
化学式
C28H32O6
mdl
——
分子量
464.558
InChiKey
QLSXLMONBYHLQX-GJMNKMQNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    34
  • 可旋转键数:
    11
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    66.4
  • 氢给体数:
    1
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,3,6-tri-O-benzyl-4-O-methyl-α,β-D-glucopyranose氢溴酸氢气 、 palladium(II) hydroxide 、 lithium bromide 作用下, 以 甲醇甲苯 为溶剂, 50.0~65.0 ℃ 、5.0 MPa 条件下, 反应 2.0h, 生成 5-(溴甲基)呋喃-2-甲醛
    参考文献:
    名称:
    从纤维素合成 5-溴甲基糠醛作为生物燃料的潜在中间体
    摘要:
    通过用 HBr 和 LiBr 处理并用甲苯连续萃取,纤维素可以转化为 5-溴甲基糠醛 (BMF),这是一种全新的生物燃料或生物燃料中间体,产率为 80%。从其他碳水化合物和稻草中,也可以高产地获得 BMF。研究了 BMF 的形成机制,结果表明该糠醛是在纤维素解聚过程中形成的,葡萄糖不是中间体。
    DOI:
    10.1002/ejoc.201001539
  • 作为产物:
    描述:
    methyl 2,3,6-tri-O-benzyl-4-O-methyl-α-D-glucopyranoside 在 盐酸 、 strontium (III) chloride hexahydrate 、 溶剂黄146 作用下, 以 为溶剂, 以45 %的产率得到2,3,6-tri-O-benzyl-4-O-methyl-α,β-D-glucopyranose
    参考文献:
    名称:
    基于结构的先导化合物优化可提高新型四氢咪唑并[1,2-a]吡啶-5-羧酸系列乙酰肝素酶-1抑制剂的效力和选择性
    摘要:
    Heparanase-1 (HPSE1) 是一种内切-β- d -葡萄糖醛酸酶,是唯一已知可裂解硫酸乙酰肝素蛋白聚糖 (HSPG) 的硫酸乙酰肝素 (HS) 的哺乳动物酶,而硫酸乙酰肝素蛋白聚糖是血管内皮基质糖萼层的关键成分。 HPSE1 的抑制具有治疗癌症和蛋白尿肾病的潜力。我们之前报道过2作为 HPSE1 抑制剂显示出中等效力,但对外切-β- d -葡萄糖醛酸酶 (GUSβ) 和葡萄糖脑苷脂酶 (GBA) 的选择性问题仍然存在。使用 X 射线共晶结构分析和碎片分子轨道计算对2进行基于结构的先导优化,得到4e ,其显示 HPSE1 抑制活性增加了 7 倍以上。随后将甲基引入4e的6-羟基中,导致18对GUSβ和GBA的抑制活性降低,同时保持对HPSE1的抑制活性。 18对小鼠血清HPSE1的抑制活性显着,在3、30和100 mg/kg剂量下持续4 h。化合物18可能是 HPSE1 抑制剂的新型先导化合物,具有改善的
    DOI:
    10.1016/j.bmc.2023.117460
点击查看最新优质反应信息

文献信息

  • Modified kojibiosides analogues
    申请人:Alberta Research Council
    公开号:US05633233A1
    公开(公告)日:1997-05-27
    Disclosed are novel analogues of kojibiose and pharmaceutical compositions comprising such analogues.
    公开的是曲酸的新颖类似物以及包含这些类似物的药物组合物。
  • Modified
    申请人:Alberta Research Council
    公开号:US05929037A1
    公开(公告)日:1999-07-27
    Disclosed is the trisaccharide .alpha.-D-Glcp-(1-2)-.alpha.-D-Glcp-(1-3)-.alpha.-D-Glcp and compounds related thereto as well as pharmaceutical compositions thereof.
    揭示了三糖α-D-Glcp-(1-2)-α-D-Glcp-(1-3)-α-D-Glcp及其相关化合物以及其药物组合物。
  • Inhibitors of <i>endo</i>-α-mannosidase. Part III. Congeners of 1-deoxy-3-<i>O</i>-(α-<scp>D</scp>-glucopyranosyl)-mannojirimycin modified in the glucose unit
    作者:Ulrike Spohr、Mimi Bach
    DOI:10.1139/v93-241
    日期:1993.11.1

    The syntheses of congeners of 1-deoxy-3-O-(α-D-glucopyranosyl)-mannojirimycin (1), a strong inhibitor of the glycoprotein-processing endo-mannosidase, are described. The chemical modifications of 1 involved all monodeoxy-genations and mono-O-methylations of the glucose unit and the replacement of this unit by D-galactose, D-xylose, and 2-chloro-2-deoxy-D-glucose. As reported previously, none of the modifications of 1, including deoxygenations and O- and N-methylations of the deoxymannojirimycin unit, improved the inhibitory properties, but demonstrated the high specificity in the recognition of 1 by the enzyme and allowed the assignment of intermolecular hydrogen bonds of the inhibitor • enzyme complex. Essential for complex formation were found NH-5, OH-2, OH-4, and OH-6 of the DMJ unit, as well as OH-3′, OH-4′, and CH2-6′ of the glucose unit. The residual activities on deoxygenating the OH-2′ and OH-6′ groups of 1 suggest their involvement at the periphery of the binding site.

    描述了一种强烈抑制糖蛋白处理内切脱甲基酶的1-去氧-3-O-(α-D-葡萄糖吡喃基)-曼诺基霉素(1)同系物的合成。1的化学改性包括所有单去氧基化和单-O-甲基化葡萄糖单元以及将该单元替换为D-半乳糖、D-木糖和2-氯-2-脱氧-D-葡萄糖。正如先前报道的那样,1的所有改性,包括去氧化和去氧曼诺基霉素单元的O-和N-甲基化,都没有改善抑制性能,但表明了对酶识别1的高特异性,并允许分配抑制剂•酶复合物的分子间氢键。复合物形成所需的关键部位包括DMJ单元的NH-5、OH-2、OH-4和OH-6,以及葡萄糖单元的OH-3′、OH-4′和CH2-6′。对于1的OH-2′和OH-6′基团的去氧化残余活性表明它们参与了结合位点的外围。
  • Chemical mapping of the active site of the glucoamylase of<i>Aspergillus niger</i>
    作者:Raymond U. Lemieux、Ulrike Spohr、Mimi Bach、Dale R. Cameron、Monica M. Palcic、Torben P. Frandsen、Bjarne B. Stoffer、Birte Svensson
    DOI:10.1139/v96-036
    日期:1996.3.1

    A recently developed technique for the probing of the combining sites of lectins and antibodies, to establish the structure of the epitope that is involved in the binding of an oligosaccharide, is used to study the binding of methyl α-isomaltoside by the enzyme glucoamylase. The procedure involved the determination of the effects on the kinetics of hydrolysis of both monodeoxygenation and mono-O-methylation at each of the seven hydroxyl groups in order to gain an estimate of the differential changes in the free energies of activation, ΔΔG. As expected, from previous publications, both deoxygenation and O-methylation of OH-4 (reducing unit), OH-4′, or OH-6′ strongly hindered hydrolysis, whereas the kinetics were virtually unaffected by either the substitutions at OH-2 or structural changes at C-1. The substitutions at OH-3 caused increases of 2.1 and 1.9 kcal/mol in the ΔΔG. In contrast, whereas deoxygenation of either OH-2′ or OH-3′ caused much smaller (0.96 and 0.52 kcal/mol) increases in ΔΔG, the mono-O-methylations resulted in severe steric hindrance to the formation of the activated complex. The relatively weak effects of deoxygenation suggest that the hydroxyl groups are replaced by water molecules and thereby participate in the binding by contributing effective complementarity. Methyl α-isomaltoside was docked into the combining site of the X-ray crystal structure at 2.4 Å resolution of the complex with the inhibitor acarbose. A fit free of steric interactions with the protein was found that has the methyl α-glucopyranoside unit in the normal4C1conformation and the other glucose unit approaching a half-chair conformation with the interunit fragment defined by the torsion angles [Formula: see text] The model provides a network of hydrogen bonds that appears to well represent the activated complex formed by the glucoamylase with both maltose and isomaltose since the structures appear to provide a sound rationale for both the specificity and catalysis provided by the enzyme. Key words: monodeoxy and mono-O-methyl derivatives of methyl α-isomaltoside, enzyme binding domain, functioning of glucoamylase, differential changes in free energy of activation, characteristics of hydrogen bonding networks.

    最近开发的一种技术用于探测凝集素和抗体的结合位点,以建立与寡糖结合中涉及的表位的结构,用于研究酶葡萄糖酶对甲基α-异麦芽糖的结合。该过程涉及确定对水解动力学的影响,包括每个七个羟基的单去氧和单-O-甲基化,以获得活化自由能的差异变化ΔΔG的估计。如预期的那样,根据先前的发表,OH-4(还原单元)、OH-4'或OH-6'的脱氧和O-甲基化强烈阻碍了水解,而OH-2的置换或C-1的结构变化几乎不影响动力学。OH-3的置换导致ΔΔG增加了2.1和1.9 kcal/mol。相比之下,OH-2'或OH-3'的脱氧导致ΔΔG增加较小(0.96和0.52 kcal/mol),而单-O-甲基化导致了对激活复合物形成的严重位阻。脱氧的相对较弱影响表明,羟基被水分子取代,从而通过提供有效的互补性参与结合。甲基α-异麦芽糖被对接到X射线晶体结构的结合位点,分辨率为2.4 Å的复合物与抑制剂阿卡波糖。找到了与蛋白质无位阻相互作用的适合,其中甲基α-葡萄糖吡喃糖单元处于正常的4C1构象,另一个葡萄糖单元接近半椅构象,其间单元片段由扭转角度定义[Formula: see text]该模型提供了一个氢键网络,似乎很好地代表了由葡萄糖酶与麦芽糖和异麦芽糖形成的激活复合物,因为这些结构似乎为酶提供的特异性和催化提供了合理的基础。关键词:甲基α-异麦芽糖的单去氧和单-O-甲基衍生物,酶结合结构域,葡萄糖酶的功能,活化自由能的差异变化,氢键网络的特性。
  • Synthesis of methyl 4′-O-methyl-13C12-β-d-cellobioside from 13C6-d-glucose. Part 1: Reaction optimization and synthesis
    作者:Yuko Yoneda、Toshinari Kawada、Thomas Rosenau、Paul Kosma
    DOI:10.1016/j.carres.2005.08.003
    日期:2005.10
    A high yielding synthetic route for methyl 4'-O-methyl-beta-D-cellobioside starting from d-glucose was established. The reaction conditions optimized with nonlabeled materials were used for the synthesis of methyl 4'-O-methyl-13C12-beta-D-cellobioside, a compound having more than 99% 13C enrichment at each of the twelve pyranose carbon atoms. The labeled compound is required to study the hydrogen bond
    建立了从d-葡萄糖开始的甲基4'-O-甲基-β-D-纤维二糖苷高产合成路线。使用未经标记的材料优化的反应条件用于合成甲基4'-O-甲基-13C12-β-D-纤维二糖苷,该化合物在十二个吡喃糖碳原子中的每一个上均具有超过99%的13C富集度。通过CPMAS NMR实验需要标记的化合物来研究纤维糊精和纤维素的氢键网络。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐