Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
摘要:
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.
Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
摘要:
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.
Glycodiversification for the Optimization of the Kanamycin Class Aminoglycosides
作者:Jinhua Wang、Jie Li、Hsiao-Nung Chen、Huiwen Chang、Christabel Tomla Tanifum、Hsiu-Hsiang Liu、Przemyslaw G. Czyryca、Cheng-Wei Tom Chang
DOI:10.1021/jm050368c
日期:2005.10.1
In an effort to optimize the antibacterial activity of kanamycin class aminoglycoside antibiotics, we have accomplished the synthesis and antibacterial assay of new kanamycin B analogues. A rationale-based glycodiversification strategy was employed. The activity of the lead is comparable to that of commercially available kanamycin. These new members, however, were found to be inactive against aminoglycoside resistant bacteria. Molecular modeling was used to provide the explanation. Thus, a new strategy for structural modifications of kanamycin class aminoglycosides is suggested.