中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
—— | neomamanuthaquinone | 613684-35-8 | C22H30O4 | 358.478 |
Dactylospongia metachromia and Dactylospongia elegans collected from French Polynesia were studied with a particular focus on the variation of the diastereomeric ratio between ilimaquinone (4) and 5-epi-ilimaquinone (5). More than 100 samples, covering an area of 4100 km2, were studied to try to clarify this intriguing issue. Nuclear magnetic resonance appeared as the non-destructive, straightforward technique of choice for a relative quantitative study. A random distribution, unique at that point in nature, is observed and leads to biosynthetic considerations. Biological evaluation of both compounds was also performed and showed moderate discrepancies in cytotoxicity and apoptosis induction.
Possessing the quinone moiety, ilimaquinone (1), a sponge–derived sesquiterpene quinone, has been hypothesised to express its cytotoxicity through a redox cycling process, yielding active product(s) that can cause DNA damage. To determine the DNA damaging effects of 1 and examine whether a redox transformation may participate in its functions, the DNA damaging properties of 1, the corresponding hydroquinone (2) and hydroquinone triacetates (3) and their 5-epimeric counterparts (4–6) were tested and compared. When incubated directly with plasmid DNA, the hydroquinones were the only active species capable of cleaving the DNA. In cell-based assays, however, the quinones and hydroquinone triacetates were active in the same range as that of the corresponding hydroquinones, and all damaged the cellular DNA in a similar manner. The in situ reduction of 1 and 4 were supported by the decreases in the cytotoxicity when cells were pre-exposed to dicoumarol, an NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitor. The results confirmed the DNA damaging activities of the ilimaquinones 1 and 4, and indicated the necessity to undergo an in-situ transformation into the active hydroquinones, thereby exerting the DNA damaging properties as parts of the cytotoxic mechanisms.