摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

丙烯醛 | 107-02-8

中文名称
丙烯醛
中文别名
败脂醛;烯丙醛
英文名称
acrolein
英文别名
2-propenal;Propenal;acrylaldehyde;prop-2-enal;acroleine;Acr
丙烯醛化学式
CAS
107-02-8
化学式
C3H4O
mdl
MFCD00006998
分子量
56.0642
InChiKey
HGINCPLSRVDWNT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    -88 °C
  • 沸点:
    52.5 °C
  • 密度:
    0.8075 g/cm3(Temp: 50 °C)
  • 物理描述:
    Acrolein, stabilized appears as a colorless to yellow volatile liquid with a disagreeable choking odor. Flash point below 0°F. Initially irritating to the eyes and mucous membranes. Very toxic by inhalation. Less dense than water (7.0 lb / gal). Vapors heavier than air. Used to make other chemicals, plastics, and as a herbicide. Rate of onset: Immediate Persistence: Minutes to hour Odor threshold: 1 ppm Source/use/other hazard: Herbicide; tox and corrosive fumes.
  • 颜色/状态:
    Colorless or yellowish liquid
  • 气味:
    Extremely sharp; extremely acrid, pungent, burnt sweet; hot fat
  • 闪点:
    -29 °C (-20 °F) - closed cup
  • 溶解度:
    In water, 2.11X10+5 mg/L at 20 °C
  • 蒸汽密度:
    1.94 (EPA, 1998) (Relative to Air)
  • 蒸汽压力:
    274 mm Hg at 25 °C
  • 亨利常数:
    1.22e-04 atm-m3/mole
  • 大气OH速率常数:
    1.99e-11 cm3/molecule*sec
  • 稳定性/保质期:
    1. 化学性质:丙烯醛兼有双键和醛基,表现出两种官能团的典型反应。其双键在酸或碱催化下可与醇、硫醇、水、胺、有机酸及无机酸等物质发生加成反应;而醛基则可在温和酸性条件下与醇或多羟基物质缩合生成缩醛。这两种官能团相互作用,赋予丙烯醛独特的性质。 2. 本品为一种极毒且强刺激性的液体,强烈刺激眼睛和呼吸道黏膜,可能导致眼结膜炎、喉炎、支气管炎;高浓度蒸气可引起肺炎、肺出血、肺水肿及呼吸困难。误服会导致严重肠胃病和肺出血等。亦可通过皮肤吸收中毒。小鼠皮下注射的半数致死量为30毫克/千克,工作场所空气中最高容许浓度为0.25毫克/立方米。操作人员应佩戴防护口罩。 3. 丙烯醛是一种极毒且具有高度刺激性的液体,在空气中的最高允许浓度为0.3毫克/立方米。直接接触会损伤眼睛和呼吸道,是一种强效的催泪毒气。吸入会引起肠胃不适、肺充血及水肿。 4. 稳定性:丙烯醛相对稳定(参考资料[26])。 5. 禁配物:强氧化剂、强还原剂、氧、酸类、碱类、氨、胺类、二氧化硫、硫脲、金属盐等。 6. 避免接触条件:受热、光照和与空气接触。 7. 聚合危害:存在聚合风险。
  • 自燃温度:
    428 °F (220 °C); unstable
  • 分解:
    Hazardous decomposition products formed under fire conditions - Carbon oxides.
  • 粘度:
    0.35 cP at 20 °C
  • 腐蚀性:
    Non-corrosive to iron & steel at room temperature
  • 燃烧热:
    -12,500 BTU/lb = -6,950 cal/g = -290X10+5 J/kg
  • 汽化热:
    216 BTU/lb = 120 cal/g = 5.02X10+5 J/kg
  • 表面张力:
    24 dynes/cm = 0.024 N/m at 20 °C
  • 电离电位:
    10.13 eV
  • 聚合:
    Violent polymerization reaction on contact with strong acid, strong base, weak acid conditions (e.g., nitrous fumes, sulfur dioxide, carbon dioxide), thiourea, or dimethylamine.
  • 气味阈值:
    Air: 0.16 uL/L; Water: 0.11 mg/L; Odor safety class D; D= 10-50% of attentive persons can detect TLV concn in the air
  • 折光率:
    Index of refraction: 1.4017 at 20 °C/D
  • 保留指数:
    462;470;469;463;463;463;464;469;465;467.7;473.1;453.7

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    4
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    17.1
  • 氢给体数:
    0
  • 氢受体数:
    1

ADMET

代谢
丙烯醛是一种饮食和环境污染物,体外研究已经发现它与葡萄糖转运的失调有关。我们研究了尿液中丙烯醛代谢物N-乙酰-S-(3-羟基丙基)-L-半胱氨酸(3-HPMA)和N-乙酰-S-(羧乙基)-L-半胱氨酸(CEMA)及其摩尔和(sigmaAcrolein)与糖尿病之间的关系,使用的数据来自2005-2006年国家健康和营养检查调查(NHANES)中参与的2027名成年人。在排除了使用胰岛素或其他糖尿病药物的患者后,我们进一步研究了这些化合物与胰岛素抵抗(n=850)的关系,后者通过稳态模型评估(HOMA-IR>2.6)作为分类结果表达。作为二次分析,我们研究了这些化合物与HOMA-IR、HOMA-beta、空腹胰岛素和空腹血糖的关系。分析中使用了尿肌酐作为模型的独立变量,并且,作为敏感性分析,这些化合物被用作肌酐校正变量。糖尿病以及胰岛素抵抗(定义为HOMA-IR>2.6)与3-HPMA、CEMA和sigmaAcrolein呈正相关,并且存在剂量-反应关系的证据(p<0.05)。与最低四分位数相比,CEMA的最高第三和第四四分位数与更高的HOMA-IR、HOMA-beta和空腹胰岛素显著相关,并呈现出剂量-反应关系。3-HPMA和sigmaAcrolein的最高第三四分位数与HOMA-IR、HOMA-beta和空腹胰岛素正相关且具有显著性。...
Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (sigmaAcrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-beta, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and sigmaAcrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-beta and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and sigmaAcrolein were positively and significantly associated with HOMA-IR, HOMA-beta and fasting insulin. ...
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙烯醛本身的致癌潜力尚未得到充分确定。然而,丙烯醛的代谢物环氧乙醛被认为是致癌的。
The carcinogenic potential of acrolein per se has not been adequately determined. However, glycidaldehyde, a metabolite of acrolein, is considered to be carcinogenic.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙烯醛通过乙醛脱氢酶被氧化成丙烯酸。丙烯醛也可以被微粒体酶转化为环氧丙醛,后者通过环氧水合酶水解成甘油醛。丙烯醛还与还原型谷胱甘肽结合,生成相应的巯基尿酸。
Acrolein is oxidized to acrylic acid by aldehyde dehydrogenase. Acrolein can also be converted to glycidaldehyde by microsomal enzymes, and the latter compound was hydrolyzed to glyceraldehyde by epoxide hydrolase. Acrolein was also conjugated with reduced glutathione to yield the corresponding mercapturic acid.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙烯醛通过与谷胱甘肽结合代谢,并作为巯基尿酸代谢物通过尿液排出。丙烯醛在体外与抗坏血酸形成迈克尔加成物,但这一反应的生物学意义尚不清楚。丙烯醛的生物学效应是由于其对生物体内的亲核物质如DNA中的鸟嘌呤、核因子、蛋白酶和其他蛋白质的关键区域中的半胱氨酸、赖氨酸、组氨酸和精氨酸残基的反应性。丙烯醛的加成作用会破坏这些生物大分子的功能,可能导致突变、基因转录改变以及凋亡的调节。
... Acrolein is metabolized by conjugation with glutathione and excreted in the urine as mercapturic acid metabolites. Acrolein forms Michael adducts with ascorbic acid in vitro, but the biological relevance of this reaction is not clear. The biological effects of acrolein are a consequence of its reactivity towards biological nucleophiles such as guanine in DNA and cysteine, lysine, histidine, and arginine residues in critical regions of nuclear factors, proteases, and other proteins. Acrolein adduction disrupts the function of these biomacromolecules which may result in mutations, altered gene transcription, and modulation of apoptosis.
来源:Hazardous Substances Data Bank (HSDB)
代谢
丙烯醛可以通过口服、吸入或皮肤途径被吸收。在肝脏和肾脏中,丙烯醛会与谷胱甘肽、半胱氨酸、N-乙酰半胱氨酸和/或硫氧还蛋白形成共轭物。丙烯醛还可以通过肝脏细胞质或微粒体转化为丙烯酸,或者通过肺或肝脏微粒体氧化成环氧乙醛。丙烯醛的代谢物通过尿液排出。
Acrolein can be absorbed though oral, inhalation, or dermal routes. In the liver and kidneys, acrolein forms conjugates with glutathione, cysteine, N-acetylcysteine, and/or thioredoxin. Acrolein can also be transformed into acrylic acid by liver cytosol or microsomes, or it can be oxidized to glycidaldehyde by lung or liver microsomes. Acrolein metabolites are excreted in the urine. (L121)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:丙烯醛是一种无色或淡黄色的液体。丙烯醛目前注册为生物杀灭剂,用作除草剂以控制灌溉渠道中的水生杂草,作为熏蒸剂以控制啮齿类动物,以及作为微生物杀灭剂以消除在石油钻探作业、纸浆和造纸厂以及工业冷却塔中形成粘液的微生物。它具有杀软体动物的作用,但目前尚未注册用于对抗软体动物。它是合成甘油、聚氨酯和聚酯树脂、蛋氨酸和药品的中间体。在第一次世界大战中,它曾以Papite的名义用作催泪瓦斯。 人类暴露和毒性:丙烯醛引起刺激和健康影响的阈值水平分别为0.7毫克/立方米(嗅觉感知),0.13毫克/立方米(眼睛刺激),0.3毫克/立方米(鼻腔刺激和眨眼),以及0.7毫克/立方米(呼吸频率降低)。过度暴露的潜在症状包括眼睛、皮肤和粘膜的刺激;肺功能降低;延迟性肺水肿;慢性呼吸道疾病。剧烈流泪和鼻腔刺激通常足以警告吸入,但暴露的病人应在24小时内观察缓慢发展的肺水肿。丙烯醛具有纤毛停滞作用,并能造成与甲醛相似的直接组织损伤。丙烯醛的半衰期相对较短,对上呼吸道和下呼吸道的影响最大。丙烯醛也是一种微弱的致敏剂,可能引发哮喘型反应。一名男性接触丙烯醛蒸气后,脸颊和眼睑发生了烧伤。 动物研究:将大鼠暴露于空气中丙烯醛浓度100-40,000 ppm,短时间(<1小时)内,死亡时间从几分钟到11天不等。死亡归因于气管和支气管阻塞、肺水肿或出血。在动物和人类中,丙烯醛的反应性有效地将物质限制在暴露部位,病理发现也仅限于这些部位。丙烯醛直接与蛋白质和非蛋白质巯基以及一级和二级胺反应。丙烯醛是一种细胞毒性剂。体外细胞毒性已观察到低至0.1毫克/升。单一暴露后,该物质对实验动物和人类具有高度毒性。蒸气对眼睛和呼吸道有刺激性。液态丙烯醛是一种腐蚀性物质。在更高的单一暴露水平下,会出现呼吸道上皮变性、炎症后遗症和呼吸功能紊乱。一般来说,在8小时/天的1.6毫克/立方米或更高浓度下,大多数暴露物种的体重增加减少、肺功能下降以及鼻、上呼吸道和肺的病理变化已有记录。病理变化包括呼吸道炎症、化生和增生。在重复暴露于9.7毫克/立方米以上丙烯醛蒸气后,观察到显著死亡率。实验动物研究表明,丙烯醛能消耗组织谷胱甘肽,在体外研究中,通过反应活性位点上的巯基抑制酶。有有限证据表明,丙烯醛可以抑制小鼠和大鼠的肺宿主防御。肺泡巨噬细胞功能的破坏可能导致肺泡空间内细菌清除减少。吸入丙烯醛的研究表明,在低于香烟烟雾可能遇到的浓度下,这种醛具有显著的心血管活性。在这些剂量下,吸入丙烯醛的主要效果是血压和心率的增加。长期口服暴露于丙烯醛,在人类不饱和醛摄入量的范围内,可诱导小鼠扩张型心肌病的表型。如果直接注入羊膜,丙烯醛可诱导致畸和胚胎毒性效应。丙烯醛已显示出在体外与核酸相互作用,并在体外和体内抑制它们的合成。无需激活,它就在细菌和真菌中诱导基因突变,并在哺乳动物细胞中引起姐妹染色单体交换。 生态毒性研究:丙烯醛对鸟类来说非常高度有毒(急性口服LD50<10毫克/千克)。丙烯醛对水生生物非常有毒。细菌、藻类、甲壳类和鱼类的急性EC50和LC50值在0.02至2.5毫克/升之间,其中细菌是最敏感的物种。已有多起丙烯醛导致鱼类死亡的报道。
IDENTIFICATION AND USE: Acrolein is a colorless or yellowish liquid. Acrolein is a biocide currently registered as an herbicide to control aquatic weeds in irrigation canals, as a burrow fumigant to control rodents, and as a microbiocide to eliminate slime-forming microbes in oil drilling operations, pulp and paper mills, and in industrial cooling towers. It has activity as a molluscicide, but is not currently registered for use against mollusks. It is an intermediate for synthetic glycerol, polyurethane and polyester resins, methionine, and pharmaceuticals. In World War I, it was used as a tear gas under the name Papite. HUMAN EXPOSURE AND TOXICITY: The threshold levels of acrolein causing irritation and health effects are 0.7 mg/ cu m for odor perception, 0.13 mg/cu m for eye irritation, 0.3 mg/cu m for nasal irritation and eye blinking, and 0.7 mg/cu m for decreased respiratory rate. Potential symptoms of overexposure are irritation of eyes, skin and mucous membranes; decreased pulmonary function; delayed pulmonary edema; chronic respiratory disease. Intense lacrimation and nasal irritation ordinarily give adequate warning of inhalation, but exposed patients should be observed for 24 hr for a slowly developing pulmonary edema. Acrolein is ciliastatic and capable of causing direct tissue damage similar to that reported for formaldehyde. Acrolein has a relatively short half-life and exerts its greatest effects on the upper and lower respiratory tract. Acrolein is also a weak sensitizer and may elicit asthma-type reactions. Accidental exposure to vapors of acrolein produced burns of the cheeks and eyelids in a male subject. ANIMAL STUDIES: Exposure of rats to airborne concentrations of acrolein of 100-40,000 ppm for short periods of time (<1 hour) caused death ranging from minutes to 11 days. Death was attributed to obstruction of trachea and bronchi, pulmonary edema, or hemorrhage. In animals and humans the reactivity of acrolein effectively confines the substance to the site of exposure, and pathological findings are also limited to these sites. Acrolein reacts directly with protein and non-protein sulfhydryl groups and with primary and secondary amines. Acrolein is a cytotoxic agent. In vitro cytotoxicity has been observed as low as 0.1 mg/liter. The substance is highly toxic to experimental animals and humans following a single exposure via different routes. The vapor is irritating to the eyes and respiratory tract. Liquid acrolein is a corrosive substance. At higher single exposure levels, degeneration of the respiratory epithelium, inflammatory sequelae, and perturbation of respiratory function develop. In general, body weight gain reduction, decrement of pulmonary function, and pathological changes in nose, upper airways, and lungs have been documented in most species exposed to concentrations of 1.6 mg/cu m or more for 8 hr/day. Pathological changes include inflammation, metaplasia, and hyperplasia of the respiratory tract. Significant mortality has been observed following repeated exposures to acrolein vapor at concentrations above 9.7 mg/ cu m. In experimental animals acrolein has been shown to deplete tissue glutathione and in in vitro studies, to inhibit enzymes by reacting with sulfhydryl groups at active sites. There is limited evidence that acrolein can depress pulmonary host defenses in mice and rats. The reduction in removal of bacteria from the alveolar spaces may result from the destruction of functionality of alveolar macrophages present in the respiratory epithelium. Inhalation studies with acrolein revealed that this aldehyde has significant cardiovascular activity at concentrations below those which might be encountered in cigarette smoke. Predominant effect of inhaled acrolein at these doses was an increase in blood pressure and heart rate. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Acrolein can induce teratogenic and embryotoxic effects if administered directly into the amnion. Acrolein has been shown to interact with nucleic acids in vitro and to inhibit their synthesis both in vitro and in vivo. Without activation it induced gene mutations in bacteria and fungi and caused sister chromatid exchanges in mammalian cells. ECOTOXICITY STUDIES: Acrolein is very highly toxic (LD50 <10 mg/kg) to birds on an acute oral exposure basis. Acrolein is very toxic to aquatic organisms. Acute EC50 and LC50 values for bacteria, algae, crustacea, and fish are between 0.02 and 2.5 mg/liter, bacteria being the most sensitive species. A number of fish kills have been reported for acrolein.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
丙烯醛迅速且不可逆地与许多细胞分子上发现的赖氨酸基团和巯基团结合,形成硫醇醚。通过这种机制,丙烯醛可以与信使化合物结合,产生直接的细胞毒性效应或者由于细胞信号传递途径中断而产生的次级效应。丙烯醛通过直接作用于核因子κ-B(IκB)激酶,抑制核因子κ轻链增强子激活的B细胞(NF-κB)转录因子的激活并抑制白细胞介素8(IL-8)的产生,从而在支气管上皮细胞中扰动炎症反应。丙烯醛迅速与角膜和鼻粘膜上的神经受体结合,导致相关神经元的快速去极化,产生眼和鼻的刺激。丙烯醛还迅速与谷胱甘肽结合,这可能抑制谷胱甘肽过氧化物酶的活性,导致细胞对氧自由基毒性的保护水平降低。此外,谷胱甘肽的加成生成GS-丙醛,通过细胞质醛脱氢酶产生氧和可能的羟基自由基。丙烯醛抑制硫氧还蛋白和硫氧还蛋白还原酶,这破坏了细胞生存所需的细胞硫醇氧化还原平衡。它通过修改载脂蛋白A-I的特定位点,干扰高密度脂蛋白(HDL)的正常逆向胆固醇转运。丙烯醛还抑制醛脱氢酶并激活瞬时受体电位阳离子通道。(L121, A84, A85, A86)
Acrolein rapidly and irreversibly binds to lysine moieties and sulfhydryl groups found on many cellular molecules forming thiol ethers. By this mechanism acrolein can bind to messenger compounds to produce direct cytotoxic effects or secondary effects from interrupted cell signaling pathways. Perturbation of inflammatory responses in bronchial epithelial cells was demonstrated by direct action of acrolein on the inhibitor of nuclear factor kappa-B (IκB) kinase, which inhibits activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor and suppresses interleukin 8 (IL-8) production. Rapid binding of acrolein to neural receptors in the corneal and nasal mucosa results in rapid depolarization of the associated neurons to produce ocular and nasal irritation. Acrolein also binds rapidly to glutathione, which may be inhibitory to the enzyme glutathione peroxidase and result in a lower level of cellular protection against oxygen radical toxicity. Further, the adduction of glutathione generates GS-propionaldehyde, which produces oxygen and possibly hydroxy radicals via cytosolic aldehyde dehydrogenase. Acrolein inhibits thioredoxin and thioredoxin reductase, which disrupts the cellular thiol redox balance necessary for cell survival. It interferes with normal reverse cholesterol transport by high density lipoprotein (HDL) by modifying specific sites in apolipoprotein A-I. Acrolein also inhibits aldehyde dehydrogenases and activates the transient receptor potential cation channel. (L121, A84, A85, A86)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
根据1999年美国环保局制定的《致癌风险评估指南草案》,由于现有数据不足以评估口服或吸入途径暴露的丙烯醛对人类致癌的可能性,因此无法确定丙烯醛的潜在致癌性。目前没有足够的人类研究来评估丙烯醛的致癌潜力。综合实验研究,没有充分证据表明丙烯醛在实验室动物中引起癌症。特别是,两项实验室动物的吸入生物测试由于方案限制而无法做出决定。两项灌胃生物测试未能显示在两种实验室动物中由丙烯醛诱导的肿瘤反应。在雌性大鼠的饮用水研究中,有提示性的证据表明有胸腔外肿瘤发生反应,但在独立召集的病理工作组重新分析数据时并未得到支持。还提出了关于该研究中报告的饮用水中丙烯醛水平的准确性的问题。一项皮肤肿瘤启动-促进研究为阴性,而腹膜内注射研究的发现具有不确定的意义。尽管丙烯醛已被证明在某些条件下能够诱导姐妹染色单体交换、DNA交联和突变,但由于其高度反应性以及在进入门户未诱导肿瘤,丙烯醛在生物学上有意义的暴露水平下达到系统部位的可能性不大。在大肠杆菌系统中观察到的阳性突变结果发生在接近致死剂量的高浓度下。此次评估取代了1988年添加到IRIS数据库中的丙烯醛癌症评估。根据1986年的风险评估指南(EPA/600/8-87/045),当时丙烯醛被分类为可能的 human致癌物(Category C)。1988年对丙烯醛的分类是基于雌性大鼠肾上腺皮质腺瘤发生率增加、丙烯醛代谢物的致癌潜力、在大肠杆菌中的诱变性以及其与可能的或已知的人类致癌物的结构关系。更新的癌症特征考虑了新的研究结果并重新评估了以前的研究。
Under the Draft Revised Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1999), the potential carcinogenicity of acrolein cannot be determined because the existing "data are inadequate for an assessment of human carcinogenic potential for either the oral or inhalation route of exposure." There are no adequate human studies of the carcinogenic potential of acrolein. Collectively, experimental studies provide inadequate evidence that acrolein causes cancer in laboratory animals. Specifically, two inhalation bioassays in laboratory animals are inadequate to make a determination because of protocol limitations. Two gavage bioassays failed to show an acrolein-induced tumor response in 2 species of laboratory animals. Suggestive evidence of an extra-thoracic tumorigenic response in a drinking water study in female rats was not supported in the reanalysis of data by an independently-convened pathology working group. Questions were also raised about the accuracy of the reported levels of acrolein in the drinking water from this study. A skin tumor initiation-promotion study was negative, and the findings from an intraperitoneal injection study were of uncertain significance. Although acrolein has been shown to be capable of inducing sister chromatid exchange, DNA cross-linking and mutations under certain conditions, its highly reactive nature and the lack of tumor induction at portals of entry make it unlikely that acrolein reaches systemic sites at biologically-significant exposure levels. The observations of positive mutagenic results in bacterial systems occurred at high concentrations near the lethal dose. This evaluation replaces the cancer assessment for acrolein added to the IRIS database in 1988. Under the Risk Assessment Guidelines of 1986 (EPA/600/8-87/045) applied at that time, acrolein was classified as a possible human carcinogen (Category C). The 1988 classification for acrolein was based on the increased incidence of adrenal cortical adenomas in female rats and carcinogenic potential of an acrolein metabolite, its mutagenicity in bacteria, and its structural relationship to probable or known human carcinogens. The updated cancer characterization considered new study results and reevaluated previous studies.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
评估:对于丙烯醛在人类中的致癌性,证据不足。对于丙烯醛在实验动物中的致癌性,证据也不足。总体评估:丙烯醛的致癌性对人类而言无法分类(第3组)。
Evaluation: There is inadequate evidence in humans for the carcinogenicity of acrolein. There is inadequate evidence in experimental animals for the carcinogenicity of acrolein. Overall evaluation: Acrolein is not classifiable as to its carcinogenicity to humans (Group 3).
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
A4:不能分类为人类致癌物。
A4: Not classifiable as a human carcinogen.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
它可以通过皮肤被吸收……
It can ... be absorbed percutaneously ...
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
在山羊和母鸡中,即使在给予高剂量的情况下,也未在组织或排泄物中检测到丙烯醛,也未在山羊奶或鸡蛋中检测到。
In goat and hen, no acrolein was detected in tissues or excreta, or in goat milk or hen eggs following administration of high doses.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
关于丙烯醛在接触后的吸收和分布情况,目前了解的非常少。丙烯醛可以通过吸入、摄入或皮肤吸收进入体内。在狗的上呼吸道中,吸入的丙烯醛有80%被吸收。丙烯醛在动物肝脏和肺微粒体中体外代谢为甘氨酰乙醛。它还能与谷胱甘肽、半胱氨酸和/或N-乙酰半胱氨酸形成共轭物,这可能是最重要的解毒机制。
Very little is known about the absorption and distribution of acrolein following exposure. Acrolein can be absorbed by inhalation, ingestion, or skin absorption. Eighty percent of inhaled acrolein is absorbed in the upper respiratory tract of dogs. Acrolein is metabolized in vitro to glycylaldehyde in animal liver and lung microsomes. It can also form conjugates with glutathione, cysteine, and/or N-acetylcysteine, which may be the most important detoxification mechanism.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
本研究旨在评估小鼠急性吸入丙烯醛后,血液循环和脊髓中丙烯醛积累的程度。使用实验室自制的吸入室,我们发现,在连续几周通过鼻子暴露于类似烟草烟雾中丙烯醛浓度后,尿液中3-HPMA(一种丙烯醛代谢物)水平升高,脊髓中丙烯醛加合物也增加。数据表明,丙烯醛被吸收进入循环系统,并且有一部分进入神经系统。
... The aim of this study was to assess the degree of acrolein accumulation in the circulation and in the spinal cord following acute acrolein inhalation in mice. Using a laboratory-fabricated inhalation chamber, we found elevated urinary 3-HPMA, an acrolein metabolite, and increased acrolein adducts in the spinal cord after weeks of nasal exposure to acrolein at a concentration similar to that in tobacco smoke. The data indicated that acrolein is absorbed into the circulatory system and some enters the nervous system. ...
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1
  • 安全说明:
    S23,S26,S28,S36/37/39,S45,S61
  • 危险品运输编号:
    UN 1092 6.1/PG 1
  • WGK Germany:
    3
  • 海关编码:
    2912190030
  • 危险类别:
    6.1
  • 危险品标志:
    F
  • 危险类别码:
    R24/25,R26,R50,R11,R34
  • RTECS号:
    AS1050000
  • 包装等级:
    I
  • 储存条件:
    1. **储存注意事项**:应储存在阴凉、通风良好的专用库房内,实行“双人收发、双人保管”制度。远离火种和热源,库温不宜超过29℃。包装需密封,避免与空气接触。应与氧化剂、还原剂、酸类、碱类及食用化学品分开存放,严禁混储。不宜大量储存或久存。采用防爆型照明和通风设施,并禁止使用易产生火花的机械设备和工具。储区应配备泄漏应急处理设备和合适的收容材料。 2. **丙烯醛的光热反应**:在光照、加热或存在微量杂质的情况下,丙烯醛会迅速聚合并释放大量热量,存在爆炸风险。与无机酸、碱或胺类接触时也会高度发热。为防止此类情况发生,建议将无机酸、碱与丙烯醛接触前加入缓冲溶液(冰醋酸84%,照相级对苯二酚8%,无水碳酸钠8%)。贮运设备及管道阀门必须十分洁净,并用惰性气体彻底清洗。按危险品规定进行储存和运输。

SDS

SDS:b7345752bc299c118886932e1e88c04a
查看
国标编号: 31024
CAS: 107-02-8
中文名称: 丙烯醛
英文名称: acrolein;allylaldehyde
别 名: 烯丙醛
分子式: C 3 H 4 O;CH 2 CHCHO
分子量: 56.06
熔 点: -87.7℃ 沸点:52.5℃
密 度: 相对密度(水=1)0.84;
蒸汽压: -26℃
溶解性: 溶于水,易溶于醇、丙酮等多数有机溶剂
稳定性: 不稳定
外观与性状: 无色或淡黄色液体,有恶臭
危险标记: 7(低闪点易燃液体)
用 途: 为合成树脂工业的重要原料之一,也大量用于有机合成与药物合成

2.对环境的影响:
一、健康危害
侵入途径:吸入、食入、经皮吸收。
健康危害:本品有强烈刺激性。吸入蒸气损害呼吸道,出现咽喉炎、胸部压迫感、支气管炎;大量吸入可致肺炎、肺水肿,尚可出现休克、肾炎及心力衰竭。可致死。液体及蒸气损害眼睛;皮肤接触可致灼伤。口服引起口腔及胃刺激或灼伤。
二、毒理学资料及环境行为
毒性:属高毒类。
急性毒性:LD 50 46mg/kg(大鼠经口);562mg/kg(兔经皮);LC 50 300mg/m 3 ,1/2小时(大鼠吸入)人吸入2.3mg/m 3 ×5分钟,不能忍受;人吸入153ppm×10分钟,最小致死浓度;人经口5mg/kg最小致死剂量。
刺激性:家兔经眼:1mg,重度刺激。家兔经皮:5mg,重度刺激。
亚急性和慢性毒性:大鼠持续接触本品浓度低至4.8mg/m 3 ,40小时后,其肝脏的碱性磷酸酶活性升高。
致突变性:微生物致突变性:鼠伤寒沙门氏菌20nL/皿。微粒体致突变:鼠伤寒沙门氏菌50µl/皿。
生殖毒性:大鼠静脉最低中毒剂量(TDL 0 ):6mg/kg(孕后用药9天),胚泡植入后死亡率升高。
致癌性:IARC致癌性评论:动物为不肯定性反应。
危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。受热分解释出高毒蒸气。在空气中久置后能生成具有爆炸性的过氧化物。与酸类、碱类、氨、胺类、二氧化硫、硫脲、金属盐类、氧化剂等猛烈反应。在火场高温下能发生聚合放热,使容器破裂。
燃烧(分解)产物:一氧化碳、二氧化碳。

3.现场应急监测方法:
检气管法《化工企业空气中有害物质测定方法》,化学工业出版社

4.实验室监测方法:
监测方法 来源 类别
气相色谱法 HJ/T39-1999 固定污染源排气
气相色谱法 《水质分析大全》张宏陶等主编 水质
气相色谱法 《固体废弃物试验与分析评价手册》中国环境监测总站等译 固体废弃物
4-已基间苯二酚分光光度法 《空气和废气监测分析方法》国家环保局编 空气和废气

5.环境标准:
中国(TJ36-79) 车间空气中有害物质的最高容许浓度 0.3mg/m 3
中国(TJ36-79) 居住区大气中有害物质的最高容许浓度 0.10mg/m 3 (一次值)
中国(GB16297-1996) 大气污染物综合排放标准 ①最高允许排放浓度(mg/m 3 ):
16(表2);20(表1)
②最高允许排放速率(kg/h):
二级0.52~11(表2);0.61~13(表1)
三级0.78~17(表2);0.92~20(表1)
③无组织排放监控浓度限值(mg/m 3 ):
0.40(表2);0.50(表1)
中国(GB11607-89) 渔业水质标准 0.02mg/L
中国(GB5048-92) 农田灌溉水质标准 0.5mg/L(水作、旱作、蔬菜)
中国(待颁布) 饮用水源中有害物质的最高容许浓度 0.1mg/L
嗅觉阈浓度 0.48~4.1mg/m 3

6.应急处理处置方法:
一、泄漏应急处理
迅速撤离泄漏污染区人员至安全区,并立即进行隔离,小泄漏时隔离150米,大泄漏时隔离300米,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性面料或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
二、防护措施
呼吸系统防护:可能接触其蒸气时,必须佩戴自吸过滤式防毒面具(全面罩)。
眼睛防护:呼吸系统防护中已作防护。
身体防护:穿防静电工作服。
手防护:戴橡胶手套。
其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。
三、急救措施
皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。
眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:误服者用水漱口,给饮牛奶或蛋清。就医。
灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。灭火剂:在抗溶性泡沫、干粉、二氧化碳、砂土。用水灭火无效。








制备方法与用途

制备方法
  1. 实验室制法:将甘油与硫酸氢钾或硫酸镁、硼酸及三氧化铝在215~235 ℃共热,将反应生成的丙烯醛气体蒸出并经冷凝收集,得粗品。然后将粗品加入10%磷酸氢钠溶液中调pH值至6,进行分馏,收集50~75 ℃馏分,即得丙烯醛精品。投料比(mol):甘油:硫酸氢钾:硫酸钾=1:0.5:0.026。

  2. 工业制法:目前主要采用丙烯催化空气氧化法。将丙烯、空气和水蒸气按一定比例混合后与催化剂一起送入固定床反应器,在0.1~0.2 MPa、350~450 ℃下进行反应,接触时间0.8 s,反应释放的热量回收用以蒸汽的生产。反应生成的气体混合物用水急冷,从急冷塔出来的尾气放空前经过洗涤。从急冷塔塔底出来的有机液进汽提塔,汽提出丙烯醛和其他轻组分,然后用蒸馏法从粗丙烯醛中除去水和乙醛。反应式:投料比(mol)丙烯:空气:水蒸气=1:10:2。

  3. 乙醛和甲醛在催化剂作用下,经气相催化缩合制得丙烯醛。或者在催化剂的作用下,将丙烯用空气氧化制丙烯醛,副产物为乙酸、乙醛、丙烯酸和二氧化碳。

合成制备方法
  1. 实验室制法:与上述相同,不再赘述。

  2. 工业制法:主要采用丙烯催化空气氧化法。反应条件及步骤同上。

  3. 乙醛和甲醛在催化剂作用下,经气相催化缩合制得丙烯醛。或者在催化剂的作用下,将丙烯用空气氧化制丙烯醛,副产物为乙酸、乙醛、丙烯酸和二氧化碳。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    丙烯醛氧气 作用下, 以 为溶剂, 反应 3.5h, 以97%的产率得到丙烯腈
    参考文献:
    名称:
    钼酸铋催化剂上丙烯醛氨氧化为丙烯腈
    摘要:
    目前的工作涉及使用中孔钼酸铋催化剂将绿色起源的丙烯醛转化为丙烯腈的潜在重要过程。通过N 2物理吸附,X射线衍射和在各种条件下,不同温度,接触时间和反应物摩尔比下的催化试验,表征氨氧化催化剂。结果表明,催化活性与比表面积成比例,这取决于钼酸铋相和气体进料中氧气的浓度。催化剂的选择性仅取决于反应温度。在350–400°C下获得的ACN选择性为100%,在450°C下降至97%。
    DOI:
    10.1016/j.apcata.2016.03.030
  • 作为产物:
    描述:
    三丙酸甘油酯thorium dioxide 作用下, 生成 丙烯醛
    参考文献:
    名称:
    Simons, Journal of the American Chemical Society, 1926, vol. 48, p. 1992
    摘要:
    DOI:
  • 作为试剂:
    描述:
    正癸烯Grubbs catalyst first generation丙烯醛 作用下, 以 二氯甲烷 为溶剂, 反应 24.0h, 生成 9-十八烯
    参考文献:
    名称:
    使用Grubbs催化剂通过复分解反应合成α,β-不饱和醛和腈
    摘要:
    使用格鲁布斯的催化剂,在缺电子的烯烃(即丙烯醛,巴豆醛,甲基丙烯醛和丙烯腈)与各种不同的1 -烯烃,包括1-癸烯,1-辛烯,1-己烯和2-烯丙氧基-6-甲基庚烷。后者特别受关注,因为它以前没有在交叉复分解反应中用作底物,并允许获得有价值的中间体以合成新的香料。大多数反应对所需的CM产物具有良好的选择性(≥90%)。对丙烯醛与1-癸烯的交叉复分解进行了详细的优化和机理研究。已经尝试使用离子液体来再循环催化剂。
    DOI:
    10.1016/j.apcata.2014.08.032
点击查看最新优质反应信息

文献信息

  • Synthesis and Preliminary Biological Evaluation of Two Fluoroolefin Analogs of Largazole Inspired by the Structural Similarity of the Side Chain Unit in Psammaplin A
    作者:Bingbing Zhang、Guangsheng Shan、Yinying Zheng、Xiaolin Yu、Zhu-Wei Ruan、Yang Li、Xinsheng Lei
    DOI:10.3390/md17060333
    日期:——
    Largazole and the amide moiety in Psammaplin A, and thus designed and synthesized two novel fluoro olefin analogs of Largazole. The preliminary biological assays showed that the fluoro analogs possessed comparable Class I HDAC inhibitory effects, indicating that this kind of modification on the side chain of Largazole was tolerable.
    从Symploca属的海洋蓝藻中分离出的拉格唑是一种有效的选择性I类HDAC(组蛋白脱乙酰化酶)抑制剂。这种天然的16元大环二肽具有一个有趣的侧链单元,即3-羟基-7-巯基庚基-4-烯酸,它存在于许多其他天然的含硫HDAC抑制剂中。值得注意的是,Psammaplin A中出现了一个类似的片段,其中的酰胺部分取代了反烯烃部分,这是另一种具有强大的HDAC抑制活性的海洋天然产物。受这种结构相似性的启发,我们假设氟代烯烃部分将模仿拉尔加唑中的烯烃部分和Psammaplin A中的酰胺部分,从而设计和合成了两种新颖的拉尔加唑的氟代烯烃类似物。
  • Sterically Demanding Oxidative Amidation of α-Substituted Malononitriles with Amines Using O<sub>2</sub>
    作者:Jing Li、Martin J. Lear、Yujiro Hayashi
    DOI:10.1002/anie.201603399
    日期:2016.7.25
    An efficient amidation method between readily available 1,1-dicyanoalkanes and either chiral or nonchiral amines was realized simply with molecular oxygen and a carbonate base. This oxidative protocol can be applied to both sterically and electronically challenging substrates in a highly chemoselective, practical, and rapid manner. The use of cyclopropyl and thioether substrates support the radical
    简单地使用分子氧和碳酸盐碱即可实现易于获得的1,1-二氰基烷烃与手性或非手性胺之间的高效酰胺化方法。该氧化方案可以高度化学选择性,实用和快速的方式应用于空间和电子挑战性底物。环丙基和硫醚底物的使用可支持α-过氧丙二腈物种的自由基形成,后者可以环化成二恶英,后者可以单价氧化丙二腈α-碳二酮以提供能够与胺亲核试剂反应的活化的酰基氰化物。
  • Synthesis of (-)-Δ<sup>9</sup>-<i>trans</i>-Tetrahydrocannabinol:  Stereocontrol via Mo-Catalyzed Asymmetric Allylic Alkylation Reaction
    作者:Barry M. Trost、Kalindi Dogra
    DOI:10.1021/ol063022k
    日期:2007.3.1
    [reaction: see text] Delta9-THC is synthesized in enantiomericaly pure form, where all of the stereochemistry is derived from the molybdenum-catalyzed asymmetric alkylation reaction of the extremely sterically congested bis-ortho-substituted cinnamyl carbonate in high regio- and enantioselectivity.
    [反应:见正文] Delta9-THC以对映体纯形式合成,其中所有立体化学均来自极空间拥挤的双邻位取代肉桂酸碳酸酯在高区域和对映体选择性下的钼催化的不对称烷基化反应。
  • <i>tert-</i> Butyl Iodide Mediated Reductive Fischer Indolization of Conjugated Hydrazones
    作者:Yuta Ito、Masafumi Ueda、Norihiko Takeda、Okiko Miyata
    DOI:10.1002/chem.201504010
    日期:2016.2.18
    available N‐aryl conjugated hydrazones with tert‐butyl iodide has been developed. In this reaction, tert‐butyl iodide is used as anhydrous HI source, and the generated HI acts as a Brønsted acid and a reducing agent. This operationally simple method allows access to various indole derivatives. Furthermore, the procedure can be applied to the synthesis of biologically active compounds.
    已经开发出一种新型的,易于获得的N-芳基共轭与叔丁基碘化物的还原费歇尔吲哚化反应。在该反应中,叔丁基碘化物用作无水HI源,生成的HI用作布朗斯台德酸和还原剂。这种操作简单的方法允许使用各种吲哚衍生物。此外,该方法可以应用于生物活性化合物的合成。
  • New cyclic phosphonium salts derived from the reaction of phosphine-aldehydes with acid
    作者:Alexandre A. Mikhailine、Paraskevi O. Lagaditis、Peter E. Sues、Alan J. Lough、Robert H. Morris
    DOI:10.1016/j.jorganchem.2010.04.016
    日期:2010.6
    Various cyclic phosphonium structures are formed in high yield by the deprotection of unstable phosphine-aldehydes in acidic solution. When there is a methylene spacer between the phosphine and the aldehyde, a phosphonium ion [PHR2CH2CH(OEt)2]Br2, R=iPrOH, Et is obtained. Reaction of these phosphonium salts with water produces the dimers [–PR2CH2CH(OH)–]2[Br]2 R = iPr, Et. When there is an ethylene
    通过将不稳定的膦醛在酸性溶液中脱保护,可以高产率形成各种环状结构。当在膦和醛之间存在亚甲基间隔基时,获得ion离子[PHR 2 CH 2 CH(OEt)2 ] Br 2,R = iPrOH,Et。这些phospho盐与水反应生成二聚体[–PR 2 CH 2 CH(OH)–] 2 [Br] 2  R =  i Pr,Et。如PPh 2 CH 2 CH 2 CH(OCH 2 CH 2O),一种具有16元环[-PPh 2 CH 2 CH 2 CH(OH)–] 4 [Cl] 4的显着四聚体,在盐酸溶液中形成为一种非对映异构体。HCl与受保护的膦醛与丙烯间隔基(PPh 2 CH 2 CH 2 CH 2 CH(OCH 2 CH 2 O))的反应导致形成单体phospho盐[–PPh 2 CH 2 CH 2 CH 2具有5元环的CH(OH)–] Cl。使用X射线衍射实验确定了不同环类型的固态结构。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
mass
cnmr
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台