摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-trans-feruloyltyramine

中文名称
——
中文别名
——
英文名称
N-trans-feruloyltyramine
英文别名
(E)-N-[2-(4-hydroxyphenyl)ethyl]-3-(3-methoxyphenyl)prop-2-enamide
N-trans-feruloyltyramine化学式
CAS
——
化学式
C18H19NO3
mdl
——
分子量
297.354
InChiKey
LHGFDILGYDYGEW-JXMROGBWSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    22
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    58.6
  • 氢给体数:
    2
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis and Identification of Small Molecules that Potently Induce Apoptosis in Melanoma Cells through G1 Cell Cycle Arrest
    摘要:
    Late-stage malignant melanoma is a cancer that is refractory to current chemotherapeutic treatments. The average survival time for patients with such a diagnosis is 6 months. In general, the vast majority of anticancer drugs operate through induction of cell cycle arrest and cell death in either the DNA synthesis (S) or mitosis (M) phase of the cell cycle. Unfortunately, the same mechanisms that melanocytes possess to protect cells from DNA damage often confer resistance to drugs that derive their toxicity from S or M phase arrest. Described herein is the synthesis of a combinatorial library of potential proapoptotic agents and the subsequent identification of a class of small molecules (triphenyl methylamides, TPMAs) that arrest the growth of melanoma cells in the G1 phase of the cell cycle. Several of these TPMAs are quite potent inducers of apoptotic death in melanoma cell lines (IC50 similar to 0.5 mu M), and importantly, some TPMAs are comparatively nontoxic to normal cells isolated from the bone marrow of healthy donors. Furthermore, the TPMAs were found to dramatically reduce the level of active nuclear factor kappa-B (NF kappa B) in the cell; NF kappa B is known to be constitutively active in melanoma, and this activity is critical for the proliferation of melanoma cells and their evasion of apoptosis. Compounds that reduce the level of NF kappa B and arrest cells in the G1 phase of the cell cycle can provide insights into the biology of melanoma and may be effective antimelanoma agents.
    DOI:
    10.1021/ja042913p
点击查看最新优质反应信息

文献信息

  • Synthesis and Identification of Small Molecules that Potently Induce Apoptosis in Melanoma Cells through G1 Cell Cycle Arrest
    作者:Robin S. Dothager、Karson S. Putt、Brittany J. Allen、Benjamin J. Leslie、Vitaliy Nesterenko、Paul J. Hergenrother
    DOI:10.1021/ja042913p
    日期:2005.6.1
    Late-stage malignant melanoma is a cancer that is refractory to current chemotherapeutic treatments. The average survival time for patients with such a diagnosis is 6 months. In general, the vast majority of anticancer drugs operate through induction of cell cycle arrest and cell death in either the DNA synthesis (S) or mitosis (M) phase of the cell cycle. Unfortunately, the same mechanisms that melanocytes possess to protect cells from DNA damage often confer resistance to drugs that derive their toxicity from S or M phase arrest. Described herein is the synthesis of a combinatorial library of potential proapoptotic agents and the subsequent identification of a class of small molecules (triphenyl methylamides, TPMAs) that arrest the growth of melanoma cells in the G1 phase of the cell cycle. Several of these TPMAs are quite potent inducers of apoptotic death in melanoma cell lines (IC50 similar to 0.5 mu M), and importantly, some TPMAs are comparatively nontoxic to normal cells isolated from the bone marrow of healthy donors. Furthermore, the TPMAs were found to dramatically reduce the level of active nuclear factor kappa-B (NF kappa B) in the cell; NF kappa B is known to be constitutively active in melanoma, and this activity is critical for the proliferation of melanoma cells and their evasion of apoptosis. Compounds that reduce the level of NF kappa B and arrest cells in the G1 phase of the cell cycle can provide insights into the biology of melanoma and may be effective antimelanoma agents.
查看更多