Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain
作者:Hui Dong、Qi Zhou、Limin Zhang、Yang Tian
DOI:10.1002/anie.201907210
日期:2019.9.23
A biosensor was created for the simultaneousmonitoring of endogenous H2 Sn and H2 S in mouse brains and exploring their roles in activation of the TRPA1 channel under two types of brain disease models: ischemia and Alzheimer's disease (AD). Based on DFT calculations and electrochemical measurements, two probes, 3,4-bis((2-fluoro-5-nitrobenzoyl)oxy)-benzoic acid (MPS-1 ) and N-(4-(2,5-dinitrophenoxy)
Highly Stable Electrochemical Probe with Bidentate Thiols for Ratiometric Monitoring of Endogenous Polysulfide in Living Mouse Brains
作者:Yinjie Qian、Limin Zhang、Yang Tian
DOI:10.1021/acs.analchem.1c04894
日期:2022.1.18
The lack of reliable approaches for real-time measurement and quantification of polysulfides (H2Sn) in vivo greatly limits the exploration of their potential roles in brain functions. Herein, an electrochemical probe, 4-(5-(1,2-dithiolan-3-yl)pentanamido)-1,2-phenylene bis(2-fluoro-5-nitrobenzoate) (FP2), was rationally designed and created for determination of H2Sn. The bis-electrophilic groups of FP2 could specifically recognize two −SH groups in H2Sn and trigger the generation of an electroactive pyrocatechol moiety, resulting in a well-defined faradic current signal at ∼0.24 V (vs Ag/AgCl). Meanwhile, bidentate thiols were designed as anchoring sites to greatly improve the assembled stability of FP2 at the Au surface, which efficiently defended the interference of glutathione (GSH) with a current decrease of less than 5.2% even after long-term measurements in 5 mM GSH for 3 h. In addition, a stable inner reference molecule with dithiols, α-lipoic acid ferrocenylamide (FcBT), was synthesized to construct a ratiometric electrochemical strategy for in vivo determination of H2Sn through one-step coassembling with FP2 via double S–Au bonds. The present ratiometric strategy demonstrated high selectivity for real-time tracking of H2Sn in a linear range of 0.25–20 μM. Eventually, the developed microelectrode with high selectivity, accuracy, and stability was employed for in vivo assaying of H2Sn in mouse brains with ischemia.