NIOSH REL: TWA 5 mg/m3, IDLH 4,000 mg/m3; OSHA PEL: TWA
5 mg/m3; ACGIH TLV: TWA 5 mg/m3.
LogP:
4.46-4.57 at 20-30℃
物理描述:
N-butyl phthalate is a colorless oily liquid. It is insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Since it is a liquid it can easily penetrate the soil and contaminate groundwater and nearby streams. It is combustible though it may take some effort to ignite. It is used in paints and plastics and as a reaction media for chemical reactions.
An individual (male, 36 years, 87 kg) ingested two separate doses of di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) at a rate of approximately 60 ug/kg. Key monoester and oxidized metabolites were identified and quantified in urine continuously collected until 48 hr post-dose. For both DnBP and DiBP, the majority of the dose was excreted in the first 24 hr (92.2 % of DnBP, 90.3 % of DiBP), while only <1 % of the dose was excreted in urine on day 2. In each case, the simple monoesters were the major metabolites (MnBP, 84 %; MiBP, 71 %). For DnBP, approximately 8 % was excreted as various side chain oxidized metabolites. For DiBP, approximately 20 % was excreted mainly as the oxidized side chain metabolite 2OH-MiBP, indicating that the extent of oxidative modification is around 2.5 times higher for DiBP than for DnBP. All DnBP and DiBP metabolites reached peak concentrations between 2 and 4 hr post-exposure, followed by a monotonic decline. For DnBP metabolites, the elimination halftime of MnBP was 2.6 hr; longer elimination halftimes were estimated for the oxidized metabolites (2.9-6.9 hr). For DiBP metabolites, MiBP had the shortest halftime (3.9 hr), and the oxidized metabolites had somewhat longer halftimes (4.1 and 4.2 hr). Together with the simple monoesters, secondary oxidized metabolites are additional and valuable biomarkers of phthalate exposure. This study provides basic human metabolism and toxicokinetic data for two phthalates that have to be considered human reproductive toxicants and that have been shown to be omnipresent in humans.
Main urinary metabolite of (14)C-dibutyl phthalate in the rat, guinea pig and hamster ... the monoester, MBP and its glucuronide. ... small amount of phthalic acid, unchanged DBP and omega and omega-1 oxidation products of MBP.
Metabolites found in rat urine after a single oral dose of (14)C-dibutyl phthalate included: phthalic acid, mono-butyl phthalate, mono-(3-hydroxy-butyl) phthalate, and mono-(4-hydroxy butyl) phthalate.
The primary route of MBuP, the major DBP metabolite, elimination in rodents and humans is urinary excretion. The monobutylphthalate glucuronide appears to be the primary metabolite identified in rat urine ... . MBuP is excreted into the bile (about 45%), but only about 5% is eliminated in the feces, indicating that efficient enterohepatic recirculation occurs ... . Biliary metabolites of DBP include monobutylphthalate, monobutylphthalate glucuronide, and oxidized monobutylphthalate glucuronide metabolites ... . Mice are known to excrete higher amounts of glucuronidated phthalate ester metabolites than rats and primates excrete higher levels of glucuronidated phthalate ester metabolites than mice. ...
Di-n-butyl phthalate is absorbed via oral, inhalation, and dermal routes. It is rapidly distributed and cleared from the body. Metabolism of di-n-butyl phthalate proceeds mainly by nonspecific esterases in the gastrointestinal tract, which hydrolyze of one butyl ester bond to yield mono-n-butyl phthalate, the primary toxic metabolite. Mono-n-butyl phthalate is conjugated with glucuronic acid via glucuronosyltransferase and excreted in the urine. (L133)
IDENTIFICATION AND USE: Dibutyl phthalate (DBP) is a colorless to faint yellow, oily liquid. It is used as plasticizer; solvent for oil-soluble dyes, insecticides and other organics; antifoam agent; textile fiber lubricant; fragrance fixative; insect repellent. HUMAN EXPOSURE AND TOXICITY: DBP appears to have little potential to irritate skin or eyes or to induce sensitization. In humans, a few cases of sensitization after exposure to DBP have been reported. In vitro studies showed human skin has been found to be less permeable than rat skin to this compound. A case described in which a chemical worker accidentally swallowed about 10 g of DBP. Delayed signs and symptoms included nausea, vomiting, and dizziness, followed later by headache, pain, and irritation in the eyes, lacrimation, photophobia, and conjunctivitis. Complete recovery occurred within 2 wk. There was evidence of a slight effect on the kidney, which may have been the result of systemic hydrolysis of the ester and cumulative effects of the alcohol and the acid, as well as their oxidation and decomposition products. A recent report described increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In other study high exposure to DBP was associated with earlier age at pubarche in boys. DBP exposure in human leukocyte cultures did not result in chromatid aberrations. DBP induced proliferation in estrogen-responsive breast cancer cell lines MCF-7 and ZR-75. ANIMAL STUDIES: The profile of effects following exposure to DBP is similar to that of other phthalate esters, which, in susceptible species, can induce hepatomegaly, increased numbers of hepatic peroxisomes, fetotoxicity, teratogenicity, and testicular damage. The acute toxicity of DBP in rats and mice is low. Signs of acute toxicity in laboratory animals include depression of activity, labored breathing, and lack of coordination. In short-term repeated-dose toxicity studies, effects in rats after oral administration included peroxisome proliferation and hepatomegaly. In longer-term studies, the effects in rats included reduced rate of weight gain, increase in relative liver weight, peroxisomal proliferation with increased peroxisomal enzyme activity, as well as alteration in testicular enzymes and degeneration of testicular germinal cells of rats. There are considerable species differences in effects on the testes following exposure to DBP, minimal effects being observed in mice and hamsters. In a continuous breeding protocol results suggest that the adverse effects of DBP are more marked in animals exposed during development and maturation than in animals exposed as adults only. DBP generally induces fetotoxic effects in the absence of maternal toxicity. Available data also indicate that DBP is teratogenic at high doses and that susceptibility to teratogenesis varies with developmental state and period of administration. DBP is not genotoxic. Since DBP causes peroxisomal proliferation, it is possible that it might be a rodent liver carcinogen, although it is much weaker in inducing hepatomegaly and peroxisome proliferation than diethylhexyl phthalate. In rats, following ingestion, DBP is metabolized by nonspecific esterases mainly in the small intestine to yield mono-n-butyl phthalate with limited subsequent biochemical oxidation of the alkyl side chain. Mono-n-butyl phthalate is stable and resistant to hydrolysis of the second ester group. Mono-n-butyl phthalate and other metabolites are excreted in the urine mainly as glucuronide conjugates. ECOTOXICITY STUDIES: The risk to aquatic organisms associated with the present mean concentrations of DBP in surface water is low. However, in highly polluted rivers the safety margin is much smaller. Recent data show that a continuous exposure to subacute concentrations of DBP for 7 d can cause antiestrogenicity in female adult Murray rainbowfish. For DBP fed ring dove (Streptophelia risoria) eggs were examined in a 3-week experiment. Egg shell thickness was found to be decreased (10%), whereas the water permeability increased (23%). Vapor of dibutyl phthalate in light produces disturbances in carotenoid synthesis of green plants resulting in chlorophyll deficiency and in extreme cases completely chlorophyll-free leaves having a white color.
The most characteristic effect of di-n-butyl phthalate is testicular atrophy. Di-n-butyl phthalate exposure causes both the release of iron from hemoglobin and/or transferrin in the liver and spleen, and the subsequent depletion of iron in the blood and testes. The decreased amount of available iron results in a decrease in succinate dehydrogenase activity in the Sertoli cells. This results in disturbances in the energy transfer system between Sertoli cells and germ cells, which is required for the differentiation of male germ cells and their progression through the seminiferous epithelium and release as mature spermatozoa. Di-n-butyl phthalate may also exhibit weak estrogenic activity. It has been shown to exhibit toxic effects in liver mitochondria by uncoupling energy-linked processes and inhibiting succinate dehydrogenase. (L133, A105)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
致癌性证据
癌症分类:D组 不可归类为人类致癌性
Cancer Classification: Group D Not Classifiable as to Human Carcinogenicity
CLASSIFICATION: D; not classifiable as to human carcinogenicity. BASIS FOR CLASSIFICATION: Pertinent data regarding carcinogenicity was not located in the available literature. HUMAN CARCINOGENICITY DATA: None. ANIMAL CARCINOGENICITY DATA: None.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌物分类
对人类无致癌性(未列入国际癌症研究机构IARC清单)。
No indication of carcinogenicity to humans (not listed by IARC).
Dibutyl phthalate administered orally to rats and mice /was/ rapidly absorbed and excreted in urine and feces within 48 hr. Max concentrations in blood /SRP: not DBP itself but a metabolite/ plasma & various organs /occurred/ at 20-30 min; /concentrations were/ greater in liver than fat and spleen.
Dibutyl phthalate given orally to rats was excreted in urine 30.6-43.5% and in feces 20.0-22.0% in 24 hr. Amounts absorbed by fetuses were approximately /the/ same as by fat tissues.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
邻苯二甲酸二丁酯在大鼠口服给药后在胆汁中被检测到...一小部分剂量通过肠道完整吸收。
Dibutyl phthalate was detected in the bile of rats after oral administration. ... A small part of the dose was absorbed intact through the intestine.
The presence of phthalate esters in the blood of individuals /who had/ ingested food /that/ had been in contact with flexible plastics ... dibutyl phthalate levels detected in the blood were much higher than prior to eating the food in the plastic packaging system ... dibutyl phthalate levels in blood /were/ 0.35 ppm ... compared to an average value of 0.02 ppm prior to the meals.
[EN] AGENTS AND METHODS FOR TREATING DYSPROLIFERATIVE DISEASES<br/>[FR] AGENTS ET MÉTHODES POUR TRAITER DES MALADIES DYSPROLIFÉRATIVES
申请人:MEMORIAL SLOAN KETTERING CANCER CENTER
公开号:WO2019161345A1
公开(公告)日:2019-08-22
Compounds are described with the general formula (I) wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and n are defined as anywhere herein, which are useful for the treatment of cancer and other dysproliferative diseases.
Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
[EN] INSECTICIDAL TRIAZINONE DERIVATIVES<br/>[FR] DÉRIVÉS DE TRIAZINONE INSECTICIDES
申请人:SYNGENTA PARTICIPATIONS AG
公开号:WO2013079350A1
公开(公告)日:2013-06-06
Compounds of the formula (I) or (I'), wherein the substituents are as defined in claim 1, are useful as pesticides.
式(I)或(I')的化合物,其中取代基如权利要求1所定义的那样,可用作杀虫剂。
PHOTOSENSITIVE RESIN COMPOSITION, OXIME SULFONATE COMPOUND, METHOD FOR FORMING CURED FILM, CURED FILM, ORGANIC EL DISPLAY DEVICE, AND LIQUID CRYSTAL DISPLAY DEVICE
申请人:FUJIFILM Corporation
公开号:US20130171415A1
公开(公告)日:2013-07-04
Disclosed is a photosensitive resin composition comprising: (Component A) an oxime sulfonate compound represented by Formula (1); (Component B) a resin comprising a constituent unit having an acid-decomposable group that is decomposed by an acid to form a carboxyl group or a phenolic hydroxy group; and (Component C) a solvent
wherein in Formula (1) R
1
denotes an alkyl group, an aryl group, or a heteroaryl group, each R
2
independently denotes a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, Ar
1
denotes an o-arylene group or an o-heteroarylene group, X denotes O or S, and n denotes 1 or 2, provided that of two or more R
2
s present in the compound, at least one denotes an alkyl group, an aryl group, or a halogen atom.
[EN] COMPOSITIONS AND METHODS FOR THE TREATMENT OF ATHEROTHROMBOSIS<br/>[FR] COMPOSITIONS ET PROCÉDÉS POUR LE TRAITEMENT DE L'ATHÉROTROMBOSE
申请人:KANDULA MAHESH
公开号:WO2013024376A1
公开(公告)日:2013-02-21
The disclosures herein provide compounds of formula I or its pharmaceutical acceptable salts, as well as polymorphs, enantiomers, stereoisomers, solvates, and hydrates thereof. These salts may be formulated as pharmaceutical compositions. The pharmaceutical compositions may be formulated for peroral administration- transdermal administration, transmucosal, syrups, topical, extended release, sustained release, or injection. Such compositions may foe used to treatment of vascular disorders or conditions such as thrombotic cerebrovascular or cardiovascular disease or its associated complications.