Fast and highly accurate mass spectrometry-based processes for detecting a particular nucleic acid sequence in a biological sample are provided. Depending on the sequence to be detected, the processes can be used, for example, to diagnose a genetic disease or chromosomal abnormality; a predisposition to a disease or condition, infection by a pathogenic organism, or for determining identity or heredity.
Disclosed is a process for the synthesis of iloperidone starting from 4-hydroxy-3-methoxy acetophenone (acetovanillone), 1-chloro-3-bromo propane and 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole hydrochloride, using a one-pot method.
Said process is performed without any intermediate isolation, and is particularly advantageous from the environmental standpoint and in terms of yields, productivity and the purity of the product obtained, both in the reaction mixture and in the crystal isolated.
Fast and highly accurate mass spectrometry-based processes for detecting a particular nucleic acid sequence in a biological sample are provided. Depending on the sequence to be detected, the processes can be used, for example, to diagnose a genetic disease or chromosomal abnormality; a predisposition to a disease or condition, infection by a pathogenic organism, or for determining identity or heredity.
Fast and highly accurate mass spectrometry-based processes for detecting a particular nucleic acid sequence in a biological sample are provided. Depending on the sequence to be detected, the processes can be used, for example, to diagnose a genetic disease or chromosomal abnormality; a predisposition to a disease or condition, infection by a pathogenic organism, or for determining identity or heredity.