The formation of carboxylic esters via reaction of carboxylic acids with O-alkylisoureas proceeds in excellent yields with very short reaction times when conducted in a monomode microwave synthesizer. Efficient processes were developed using preformed or commercially available isoureas derived from primary and secondary alcohols, with a reaction time of only 5 min or less. It was demonstrated that under these microwave conditions, ester formation proceeded in good yields with clean inversion of configuration where appropriate. The process was validated using menthol, a hindered substrate for S(N)2 reactions. In addition, starting from primary alcohols, ester formation was successfully accomplished using ail in situ isourea formation procedure. A polymer-assisted solution-phase procedure was also developed by employing preformed solid-supported isoureas and by an efficient "catch and release" ester formation procedure whereby primary alcohols were caught on resin as isoureas by reaction with immobilized carbodiimide and released as esters by subsequent treatment with a carboxylic acids.
Synthesis of 25-Hydroxyvitamin D<sub>3</sub> and 26,26,26,27,27,27-Hexadeutero-25-hydroxyvitamin D<sub>3</sub> on Solid Support
A convenient five-step route to 25-hydroxylated vitamin D3 compounds on (hydroxymethyl)polystyrene support is reported. A CD-side chain fragment was anchored to the solid phase through an ester group at C25 and coupled to an A ring building block to assemble the vitamin D triene system by the Wittig−Horner approach. Deprotection of the hydroxy group was carried out on the support, prior to functionalization