摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-ethyl-5-methyl-2-oxepanone

中文名称
——
中文别名
——
英文名称
5-ethyl-5-methyl-2-oxepanone
英文别名
(5S)-5-ethyl-5-methyloxepan-2-one
5-ethyl-5-methyl-2-oxepanone化学式
CAS
——
化学式
C9H16O2
mdl
——
分子量
156.225
InChiKey
KILOLLSYXBAFDV-VIFPVBQESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    11
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.89
  • 拓扑面积:
    26.3
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为产物:
    描述:
    2-甲基丁醛 在 5percent Pd/C Escherichia coli BL21(DE3)(pMM4) 、 硫酸氢气β-环糊精 作用下, 以 乙酸乙酯 为溶剂, 反应 27.0h, 生成 5-ethyl-5-methyl-2-oxepanone
    参考文献:
    名称:
    Asymmetric Baeyer−Villiger Oxidations of 4-Mono- and 4,4-Disubstituted Cyclohexanones by Whole Cells of Engineered Escherichia coli
    摘要:
    Whole cells of an Escherichia coli strain that overexpresses Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase have been used for the Baeyer-Villiger oxidations of a variety of 4-mono- and 4,4-disubstituted cyclohexanones. In cases where comparisons were possible, this new biocatalytic reagent provided lactones with chemical yields and optical purities that were comparable to those obtained from the purified enzyme or a strain of bakers' yeast that expresses the same enzyme. The efficient production of cyclohexanone monooxygenase in the E. coli expression system (ca. 30% of total soluble protein) allowed these oxidations to reach completion in approximately half the time required for the engineered bakers' yeast strain. Surprisingly, 4,4-disubstituted cyclohexanones were also accepted by the enzyme, and the enantioselectivities of these oxidations could be rationalized by considering the conformational energies of bound substrates along with the enzyme's intrinsic enantioselectivity. The enzyme expressed in E. coli cells also oxidized several 4-substituted cyclohexanones bearing polar substituents, often with high enantioselectivities. In the case of 4-iodocyclohexanone the lactone was obtained in > 98% ee and its absolute configuration was assigned by X-ray crystallography. The crystal belongs to the monoclinic P2(1) space group with a = 5.7400(10), b = 6.1650(10), c = 11.377(2) Angstrom, b = 99.98(2)degrees, and Z = 2. Taken together, these results demonstrate the utility of an engineered bacterial strain in delivering useful chiral building blocks in an experimentally simple manner.
    DOI:
    10.1021/jo001292p
点击查看最新优质反应信息

文献信息

  • Self-Sufficient Baeyer–Villiger Monooxygenases: Effective Coenzyme Regeneration for Biooxygenation by Fusion Engineering
    作者:Daniel E. Torres Pazmiño、Radka Snajdrova、Bert-Jan Baas、Michael Ghobrial、Marko D. Mihovilovic、Marco W. Fraaije
    DOI:10.1002/anie.200704630
    日期:2008.3.7
  • Asymmetric Baeyer−Villiger Oxidations of 4-Mono- and 4,4-Disubstituted Cyclohexanones by Whole Cells of Engineered <i>Escherichia </i><i>c</i><i>oli</i>
    作者:Marko D. Mihovilovic、Gang Chen、Shaozhao Wang、Brian Kyte、Fernande Rochon、Margaret M. Kayser、Jon D. Stewart
    DOI:10.1021/jo001292p
    日期:2001.2.1
    Whole cells of an Escherichia coli strain that overexpresses Acinetobacter sp. NCIB 9871 cyclohexanone monooxygenase have been used for the Baeyer-Villiger oxidations of a variety of 4-mono- and 4,4-disubstituted cyclohexanones. In cases where comparisons were possible, this new biocatalytic reagent provided lactones with chemical yields and optical purities that were comparable to those obtained from the purified enzyme or a strain of bakers' yeast that expresses the same enzyme. The efficient production of cyclohexanone monooxygenase in the E. coli expression system (ca. 30% of total soluble protein) allowed these oxidations to reach completion in approximately half the time required for the engineered bakers' yeast strain. Surprisingly, 4,4-disubstituted cyclohexanones were also accepted by the enzyme, and the enantioselectivities of these oxidations could be rationalized by considering the conformational energies of bound substrates along with the enzyme's intrinsic enantioselectivity. The enzyme expressed in E. coli cells also oxidized several 4-substituted cyclohexanones bearing polar substituents, often with high enantioselectivities. In the case of 4-iodocyclohexanone the lactone was obtained in > 98% ee and its absolute configuration was assigned by X-ray crystallography. The crystal belongs to the monoclinic P2(1) space group with a = 5.7400(10), b = 6.1650(10), c = 11.377(2) Angstrom, b = 99.98(2)degrees, and Z = 2. Taken together, these results demonstrate the utility of an engineered bacterial strain in delivering useful chiral building blocks in an experimentally simple manner.
查看更多