Iodobenzene-Catalyzed α-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid
摘要:
Reported here for the first time is the iodobenzene-catalyzed alpha-oxidation of ketones, in which diacyloxy(phenyl)-lambda3-iodanes generated in situ act as real oxidants of ketones and m-chloroperbenzoic acid serves as a terminal oxidant. Oxidation of a ketone with m-chloroperbenzoic acid in acetic acid in the presence of a catalytic amount of iodobenzene, BF3.Et2O, and water at room temperature under argon affords an alpha-acetoxy ketone in good yield. p-Methyl- and p-chloroiodobenzene also serve as efficient catalysts in this direct oxidation. We found that when the reaction was carried out in the absence of a catalytic amount of iodobenzene, Baeyer-Villiger oxidation of a ketone took place. It is noted that use of water and BF3.Et2O is crucial to the success of this alpha-acetoxylation.
Reported here for the first time is the iodobenzene-catalyzed alpha-oxidation of ketones, in which diacyloxy(phenyl)-lambda3-iodanes generated in situ act as real oxidants of ketones and m-chloroperbenzoic acid serves as a terminal oxidant. Oxidation of a ketone with m-chloroperbenzoic acid in acetic acid in the presence of a catalytic amount of iodobenzene, BF3.Et2O, and water at room temperature under argon affords an alpha-acetoxy ketone in good yield. p-Methyl- and p-chloroiodobenzene also serve as efficient catalysts in this direct oxidation. We found that when the reaction was carried out in the absence of a catalytic amount of iodobenzene, Baeyer-Villiger oxidation of a ketone took place. It is noted that use of water and BF3.Et2O is crucial to the success of this alpha-acetoxylation.