Design, synthesis, and evaluation of potent Wnt signaling inhibitors featuring a fused 3-ring system
摘要:
The Wnt signaling pathway is a critical developmental pathway which operates through control of cellular functions such as proliferation and differentiation. Aberrant Wnt signaling has been linked to the formation and metastasis of tumors. Porcupine, a member of the membrane -bound O-acyltransferase family of proteins, is an important component of the Wnt pathway. Porcupine catalyzes the palmitoylation of Wnt proteins, a process needed for their secretion and activity. Here we report a novel series of compounds obtained by a scaffold hybridization strategy from a known porcupine inhibitor class. The leading compound 59 demonstrated subnanomolar inhibition of Wnt signaling in a paracrine cellular assay. Compound 59 also showed excellent chemical, plasma and liver microsomal stabilities. Furthermore, compound 59 exhibited good pharmacokinetic profiles with 30% oral bioavailability in rat. Collectively, these results strongly support further optimization of this novel scaffold to develop better Wnt pathway inhibitors. (C) 2015 Elsevier Masson SAS. All rights reserved.
The Wnt signaling pathway is a critical developmental pathway which operates through control of cellular functions such as proliferation and differentiation. Aberrant Wnt signaling has been linked to the formation and metastasis of tumors. Porcupine, a member of the membrane -bound O-acyltransferase family of proteins, is an important component of the Wnt pathway. Porcupine catalyzes the palmitoylation of Wnt proteins, a process needed for their secretion and activity. Here we report a novel series of compounds obtained by a scaffold hybridization strategy from a known porcupine inhibitor class. The leading compound 59 demonstrated subnanomolar inhibition of Wnt signaling in a paracrine cellular assay. Compound 59 also showed excellent chemical, plasma and liver microsomal stabilities. Furthermore, compound 59 exhibited good pharmacokinetic profiles with 30% oral bioavailability in rat. Collectively, these results strongly support further optimization of this novel scaffold to develop better Wnt pathway inhibitors. (C) 2015 Elsevier Masson SAS. All rights reserved.