中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
2,4,6-三甲氧基苯乙酮 | 1-(2,4,6-trimethoxyphenyl)ethanone | 832-58-6 | C11H14O4 | 210.23 |
2-羟基-4,6-二甲氧基苯乙酮 | 2-hydroxy-4,6-dimethoxyacetophenone | 90-24-4 | C10H12O4 | 196.203 |
Six halogenated trimethoxy chalcone derivatives (CH1–CH6) were synthesized and spectrally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2′,3′,4′-methoxy moiety in CH4–CH6 was more effective for MAO-B inhibition than the 2′,4′,6′-methoxy moiety in CH1–CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2′,3′,4′-methoxy derivatives (CH4-CH6), the order of inhibition was –Br in CH5 > -Cl in CH4 > -F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions.
Obesity, characterized by excess lipid accumulation, has emerged as a leading public health problem. Excessive, adipocyte-induced lipid accumulation raises the risk of metabolic disorders. Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that can be obtained from abundant adipose tissue. High fat mass could be caused by an increase in the size (hypertrophy) and number (hyperplasia) of adipocytes. Reactive oxygen species (ROS) are involved in the adipogenic differentiation of human adipose-derived stem cells (hASCs). Lowering the level of ROS is important to blocking or retarding the adipogenic differentiation of hASCs. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a transcription factor that mediates various antioxidant enzymes and regulates cellular ROS levels. Neohesperidin dihydrochalcone (NHDC), widely used as artificial sweetener, has been shown to have significant free radical scavenging activity. In the present study, (E)-3-(4-chlorophenyl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (CTP), a novel NHDC analogue, was synthesized and examined to determine whether it could inhibit adipogenic differentiation. The inhibition of adipogenic differentiation in hASCs was tested using NHDC and CTP. In the CTP group, reduced Oil Red O staining was observed compared with the differentiation group. CTP treatment also downregulated the expression of PPAR-γ and C/EBP-α, adipogenic differentiation markers in hASCs, compared to the adipogenic differentiation group. The expression of FAS and SREBP-1 decreased in the CTP group, along with the fluorescent intensity (amount) of ROS. Expression of the Nrf2 protein was slightly decreased in the differentiation group. Meanwhile, in both the NHDC and CTP groups, Nrf2 expression was restored to the level of the control group. Moreover, the expression of HO-1 and NQO-1 increased significantly in the CTP group. Taken together, these results suggest that CTP treatment suppresses the adipogenic differentiation of hASCs by decreasing intracellular ROS, possibly through activation of the Nrf2 cytoprotective pathway. Thus, the use of bioactive substances such as CTP, which activates Nrf2 to reduce the cellular level of ROS and inhibit the adipogenic differentiation of hASCs, could be a new strategy for overcoming obesity.