Preparative access to medicinal chemistry related chiral alcohols using carbonyl reductase technology
摘要:
Libraries of highly enantioenriched secondary alcohols in both enantiomeric forms were synthesised by enzymatic reduction of their parent ketones using selectAZyme (TM) carbonyl reductase (CRED) technology. Commercially available CREDs were able to reduce a range of substrate classes efficiently and with very high enantioselectivity. Matching substrate classes to small subsets of CREDs enabled the fast development of preparative bioreductions and the rapid generation of 100-1500 mg samples of chiral alcohols in typically >95% ee and the majority in >= 99.0% ee. The conditions for small scale synthesis were then scaled up to 0.5 kg to deliver one of the chiral alcohols, (S)-1-(4-bromophenyl)-2-chloroethanol, in 99.8% ee and 91% isolated yield. (C) 2013 Elsevier Ltd. All rights reserved.
Process for preparing 3-heteroaryl-3-hydroxypropanoic acid derivatives
申请人:——
公开号:US20040181058A1
公开(公告)日:2004-09-16
The invention relates to a process for preparing enantiomer-enriched 3-heteroaryl-3-hydroxypropanoic acid derivatives and 3-heteroaryl-1-aminopropan-3-ols, and to their use.
Verfahren zur Herstellung von 3-Heteroaryl-3-hydroxy-propansäurederivaten durch enantionselektive mikrobielle Reduktion
申请人:Bayer Chemicals AG
公开号:EP1405917A2
公开(公告)日:2004-04-07
Die Erfindung betrifft ein Verfahren zur Herstellung von enantiomerenangereicherten 3-Heteroaryl-3-hydroxy-propansäurederivaten und 3-Heteroaryl-1-amino-propan-3-olen sowie deren Verwendung.
Verfahren zur Herstellung von 3-Heteroaryl-3-hydroxy-propansäurederivaten durch enantioselektive mikrobielle Reduktion
申请人:Saltigo GmbH
公开号:EP1405917B1
公开(公告)日:2013-08-14
US7553970B2
申请人:——
公开号:US7553970B2
公开(公告)日:2009-06-30
Preparative access to medicinal chemistry related chiral alcohols using carbonyl reductase technology
作者:Andrew S. Rowan、Thomas S. Moody、Roger M. Howard、Toby J. Underwood、Iain R. Miskelly、Yanan He、Bo Wang
DOI:10.1016/j.tetasy.2013.09.015
日期:2013.11
Libraries of highly enantioenriched secondary alcohols in both enantiomeric forms were synthesised by enzymatic reduction of their parent ketones using selectAZyme (TM) carbonyl reductase (CRED) technology. Commercially available CREDs were able to reduce a range of substrate classes efficiently and with very high enantioselectivity. Matching substrate classes to small subsets of CREDs enabled the fast development of preparative bioreductions and the rapid generation of 100-1500 mg samples of chiral alcohols in typically >95% ee and the majority in >= 99.0% ee. The conditions for small scale synthesis were then scaled up to 0.5 kg to deliver one of the chiral alcohols, (S)-1-(4-bromophenyl)-2-chloroethanol, in 99.8% ee and 91% isolated yield. (C) 2013 Elsevier Ltd. All rights reserved.