Discovery of 4′′-Ether Linked Azithromycin-Quinolone Hybrid Series: Influence of the Central Linker on the Antibacterial Activity
摘要:
A series of novel C-4"-substituted azithromycins was synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and macrolide-lincosamide-streptogramin (MLS) resistant pathogens. In summary, azithromycin and quinolone substructures merged in a mutually SAR-compatible design gave rise to a new class of antimicrobials with an improved spectrum and potency over azithromycin. Prototypical analogues 71 and, 8f display an improved potency versus azithromycin against Gram-positive and fastidious Gram-negative pathogens. In particular, these new leads maintain activity against MLS-resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes. In addition, they represent an improvement over telithromycin (1) and cethromycin (2) against the fastidious Gram-negative pathogen Haemophilus influenzae.
Discovery of 4′′-Ether Linked Azithromycin-Quinolone Hybrid Series: Influence of the Central Linker on the Antibacterial Activity
摘要:
A series of novel C-4"-substituted azithromycins was synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and macrolide-lincosamide-streptogramin (MLS) resistant pathogens. In summary, azithromycin and quinolone substructures merged in a mutually SAR-compatible design gave rise to a new class of antimicrobials with an improved spectrum and potency over azithromycin. Prototypical analogues 71 and, 8f display an improved potency versus azithromycin against Gram-positive and fastidious Gram-negative pathogens. In particular, these new leads maintain activity against MLS-resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes. In addition, they represent an improvement over telithromycin (1) and cethromycin (2) against the fastidious Gram-negative pathogen Haemophilus influenzae.
In this paper synthesis of macrolones 1-18 starting from azithromycin is reported. Two key steps in the construction of the linker between macrolide and quinolone moiety, are formation of central ether bond by alkylation of unactivated OH group, and formation of terminal C-C bond at 6-position of the quinolone unit. Due to the difficulty in formation of these two bonds the study of alternative synthetic methodologies and optimization of the conditions for the selected routes was required. Formation of C-4"-O-ether bond was completed by modified Michael addition, whereas O-alkylation via diazonium cation proved to be the most effective in formation of the central allylic or propargylic ether bond. Comparison of Heck and Sonogashira reaction revealed the former as preferred route to the C-C bond formation at C(6) position of the quinolone unit. Most of the target compounds exhibited highly favorable antibacterial activity against common respiratory pathogens, without significant cytotoxicity profile when tested in vitro on eukaryotic cell lines. (C) 2010 Elsevier Ltd. All rights reserved.