A Novel Titanium-Catalyzed Cyclization of Olefinic Iodoethers to Tetrahydrofurans
摘要:
A catalytic reductive cyclization of olefinic iodo-ethers was achieved by use of cat. Cp2TiCl2 in the presence of Mn and Me3SiCl. This protocol provides a versatile method for the selective formation of multisubstituted tetrahydrofurans.
A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp3-carbon–halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.
A cobalt complex, [CoCl2(dpph)] (DPPH = [1,6-bis(diphenylphosphino)hexane]), catalyzes an intermolecular styrylation reaction of alkyl halides in the presence of Me3SiCH2MgCl in ether to yield beta-alkylstyrenes. A variety of alkyl halides including alkyl chlorides can participate in the styrylation. A radical mechanism is strongly suggested for the styrylation reaction. The sequential isomerization/styrylation
N-Heterocyclic Carbene Ligands in Cobalt-Catalyzed Sequential Cyclization/Cross-Coupling Reactions of 6-Halo-1-hexene Derivatives with Grignard Reagents
[reaction: see text] N-Heterocyclic carbene/cobalt systems effectively catalyze sequential cyclization/cross-coupling reactions of 6-halo-1-hexene derivatives with trialkylsilylmethyl and 1-alkynyl Grignardreagents, which phosphine and amine ligands did not promote.
Cobalt-Mediated Cross-Coupling Reactions of Primary and Secondary Alkyl Halides with 1-(Trimethylsilyl)ethenyl- and 2-Trimethylsilylethynylmagnesium Reagents
[reaction: see text] This paper describes cobalt-mediated cross-coupling reactions of alkyl halides with 1-(trimethylsilyl)ethenylmagnesium bromide and 2-(trimethylsilyl)ethynylmagnesium bromide, respectively. The cobalt system allows for employing secondary as well as primary alkyl halides as the substrates. The reactions offer facile formations of alkyl-alkenyl and alkyl-alkynyl bonds. The reaction
Functional-group-compatible cross-coupling reaction of alkyl halides with arylzinc reagents takes place under iron catalysis in the presence of TMEDA, producing a variety of aromatic compounds in good to excellent yield. The pronounced effect of a magnesium salt was found to be the key to the promotion of the iron-catalyzed coupling reaction.