摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

盐酸氟西汀 | 56296-78-7

中文名称
盐酸氟西汀
中文别名
弗洛克叮盐酸盐;(+/-)-N-甲基-3-(对三氟甲基苯氧基)-3-苯基丙胺盐酸盐
英文名称
Adofen
英文别名
Fluoxetine hydrochloride;fluoxetine;Prozac;(RS)-N-methyl-3-phenyl-3-(4-trifluoromethylphenoxy)propan-1-amine hydrochloride;fluoxetine HCl;(±)-N-methyl-γ-[4-(trifluoromethyl)phenoxy]benzenepropanamine hydrochloride;N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine hydrochloride;methyl-[3-phenyl-3-[4-(trifluoromethyl)phenoxy]propyl]azanium;chloride
盐酸氟西汀化学式
CAS
56296-78-7
化学式
C17H18F3NO*ClH
mdl
MFCD00214288
分子量
345.792
InChiKey
GIYXAJPCNFJEHY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    158-159°C
  • 比旋光度:
    -0.05~+0.05°
  • 闪点:
    9℃
  • 溶解度:
    H2O:可溶(微溶)
  • 颜色/状态:
    White to off-white crystalline solid
  • 稳定性/保质期:
    如果按照规定使用和储存,则不会分解,未有已知危险反应。

计算性质

  • 辛醇/水分配系数(LogP):
    4.17
  • 重原子数:
    23
  • 可旋转键数:
    6
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.294
  • 拓扑面积:
    21.3
  • 氢给体数:
    2
  • 氢受体数:
    5

ADMET

代谢
本研究旨在确定氟西汀N-去甲基化在人类肝微粒体中的动力学行为,并识别参与这一代谢途径的细胞色素P450(CYP)的亚型。在六种基因分型的CYP2C19广泛代谢者(EM)的人类肝微粒体中,确定了去甲氟西汀的Ne形成的动力学。对氟西汀N-去甲基化活性与各种CYP酶活性之间的相关性进行了研究。还使用了各种细胞色素P-450亚型的选择性抑制剂或化学探针。所有肝微粒体中去甲氟西汀形成的动力学都符合单酶米氏方程(平均Km=32 umol/L +/- 7 umol/L)。在25 umol/L和100 umol/L的氟西汀N-去甲基化与250微摩尔/L的妥布特胺3-羟基化(r1=0.821,P1=0.001;r2=0.668,P2=0.013)以及100 umol/L高底物浓度下的S-美芬妥因4'-羟化酶活性(r=0.717,P=0.006)之间存在显著相关性。在高浓度的S-美芬妥因(SMP)(CYP2C19底物)和磺胺唑(SUL)(CYP2C9的选择性抑制剂)存在下,去甲氟西汀的形成受到显著抑制。当与CYP3A4(三乙酰奥兰多霉素,TAO)的化学探针抑制剂共同孵化时,反应受到最小抑制。在高底物浓度(100 umol/L)下,当微粒体预先与SUL加TAO共同孵化时,PM肝脏中氟西汀N-去甲基化的抑制大于EM肝脏(73 % 对 45 %,P < 0.01)。在接近治疗水平的底物浓度下,细胞色素P450 CYP2C9可能是人类肝微粒体中催化氟西汀N-去甲基化的主要CYP亚型,而多态性CYP2C19在高底物浓度下在这一代谢途径中可能发挥更重要的作用。
The present study was designed to define the kinetic behavior of fluoxetine N-demethylation in human liver microsomes and to identify the isoforms of cytochrome p450 (CYP) involved in this metabolic pathway. The kinetics of Ne formation of norfluoxetine was determined in human liver microsomes from six genotyped CYP2C19 extensive metabolizers (EM). The correlation studies between the fluoxetine N-demethylase activity and various CYP enzyme activities were performed. Selective inhibitors or chemical probes of various cytochrome P-450 isoforms were also employed. The kinetics of norfluoxetine formation in all liver microsomes were fitted by a single-enzyme Michaelis-Menten equation (mean Km=32 umol/L +/- 7 umol/L). Significant correlations were found between N-demethylation of fluoxetine at both 25 umol/L and 100 umol/L and 3-hydroxylation of tolbutamide at 250 micromol/L (r1=0.821, P1=0.001; r2=0.668, P2=0.013), respectively, and S-mephenytoin 4'-hydroxylase activity (r=0.717, P=0.006) at high substrate concentration of 100 umol/L. S-mephenytoin (SMP) (a CYP2C19 substrate) at high concentration and sulfaphenazole (SUL) (a selective inhibitor of CYP2C9) substantially inhibited norfluoxetine formation. The reaction was minimally inhibited by coincubation with chemical probe, inhibitor of CYP3A4 (triacetyloleandomycin, TAO). The inhibition of fluoxetine N-demethylation at high substrate concentration (100 umol/L) was greater in PM livers than in EM livers (73 % vs 45 %, P < 0.01) when the microsomes were precoincubated with SUL plus TAO. Cytochrome p450 CYP2C9 is likely to be a major CYP isoform catalyzing fluoxetine N-demethylation in human liver microsomes at a substrate concentration close to the therapeutic level, while polymorphic CYP2C19 may play a more important role in this metabolic pathway at high substrate concentration.
来源:Hazardous Substances Data Bank (HSDB)
代谢
氟西汀的确切代谢途径尚未完全阐明。这种药物似乎在肝脏中广泛代谢,主要代谢为去甲氟西汀和其他几种代谢物。去甲氟西汀(脱甲基氟西汀)是主要的代谢物,通过氟西汀的N-脱甲基作用形成,这可能受到多基因控制。去甲氟西汀的5-羟色胺再摄取抑制活性的效力和平选择性似乎与母药相似。氟西汀和去甲氟西汀在肝脏中与葡萄糖醛酸发生结合反应,有限的动物证据表明,母药及其主要代谢物也发生O-脱烷基化,形成对-三氟甲基苯酚,后者似乎进一步代谢为马尿酸。
The exact metabolic fate of fluoxetine has not been fully elucidated. The drug appears to be metabolized extensively, probably in the liver, to norfluoxetine and several other metabolites. Norfluoxetine (desmethylfluoxetine) the principal metabolite, is formed by N-demethylation of fluoxetine, which may be under polygenic control. The potency and selectivity of norfluoxetine's serotonin-reuptake inhibiting activity appear to be similar to those of the parent drug. Both fluoxetine and norfluoxetine undergo conjugation with glucuronic acid in the liver, and limited evidence from animals suggests that both the parent drug and its principal metabolite also undergo O-dealkylation to form p-trifluoromethylphenol, which subsequently appears to be metabolized to hippuric acid.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
识别:氟西汀是一种作为抗抑郁药使用的选择性5-羟色胺再摄取抑制剂。它可溶于:水、甲醇、氯仿,在己烷、乙酸乙酯和苯中不溶。人类暴露:主要风险和靶器官:氟西汀在过量时的安全性高于其他大多数类别的抗抑郁药。在过量时,大多数患者只会经历轻微的神经系统和胃肠系统症状;显著的心血管毒性不常见。氟西汀的5-羟色胺能效应可能会与其它抗抑郁药、单胺氧化酶抑制剂、卡马西平或锂联合使用而增强,并产生一种生命威胁的血清素能综合症,包括高热、颤抖和抽搐。临床效应总结:嗜睡、颤抖、头痛、视力模糊、眩晕、不安,罕见的情况下会出现癫痫和昏迷。恶心、呕吐、腹痛。心动过缓、轻度高血压或低血压。禁忌症:绝对禁忌:对氟西汀过敏。与舒马曲普坦、非特异性单胺氧化酶抑制剂和B特异性单胺氧化酶抑制剂联合使用。相对禁忌:与A特异性单胺氧化酶抑制剂或其他抗抑郁药联合治疗。怀孕或哺乳期。进入途径:口服:氟西汀通过口服给药。暴露途径的吸收:氟西汀盐酸盐从胃肠道吸收良好,口服给药后6到8小时血药浓度达到峰值。系统的生物利用度大于85%,似乎不受食物影响。暴露途径的分布:氟西汀在全身广泛分布。血浆蛋白结合率为94%。暴露途径的生物半衰期:氟西汀的半衰期相对较长且变化很大,单次给药后从1到4天不等,平均近70小时;接受高剂量长期治疗的患者可能会表现出延长的消除半衰期。其活性代谢物,去甲氟西汀的半衰期约为7到9天。代谢:氟西汀在肝脏广泛代谢为一种去甲基代谢物,去甲氟西汀,其活性与氟西汀相似。活性代谢物去甲氟西汀的血药浓度峰值出现在摄入后约76小时。消除与排泄:主要的消除途径似乎是进一步在肝脏代谢为无活性代谢物,然后这些代谢物结合并随尿液排出。作用模式:毒动学:氟西汀是中枢神经系统神经元5-羟色胺再摄取的强效抑制剂,并可能与引起5-羟色胺释放的其他药物或情况相互作用。增强5-羟色胺能效应可能会产生一种生命威胁的血清素综合症。药动学:氟西汀特异性地抑制神经元对5-羟色胺的再摄取,从而增加突触中5-羟色胺的浓度并增强5-羟色胺能神经传递。氟西汀对其他神经递质的影响很小。氟西汀对心脏没有直接影响。致癌性:人体研究:没有证据显示服用氟西汀的患者有致癌性。致畸性:人体研究:一项对128名在妊娠早期接触氟西汀的妇女的研究显示,主要胎儿畸形没有增加。然而,尚不清楚该药物是否为人类致畸物。一名母亲在怀孕期间大部分时间服用氟西汀的新生儿出现了呼吸急促、呕吐、持续哭泣、烦躁不安、颤抖和肌张力增加;症状在96小时内缓解。氟西汀和去甲氟西汀会排入母乳中。对婴儿的影响不确定。在给哺乳期母亲使用氟西汀时应谨慎。相互作用:已报告氟西汀与其他药物的相互作用,包括L-色氨酸、L-多巴;单胺氧化酶抑制剂:司来吉兰、反苯环丙胺;三环类抗抑郁药;选择性5-羟色胺再摄取抑制剂:曲唑酮、齐美定;苯二氮䓬类药物:阿普唑仑、地西泮;布斯的品、锂、抗癫痫药:卡马西平、苯妥英、丙戊酸;喷他佐辛、右美沙芬、芬氟拉明、钙通道阻滞剂、本托品、赛庚啶、克拉霉素。大麻、乙醇和LSD。在停止使用单胺氧化酶抑制剂抗抑郁药和引入氟西汀之间,至少应间隔14天。反之,由于氟西汀及其代谢物去甲氟西汀的半衰期较长,建议在停止使用氟西汀和引入单胺氧化酶抑制剂之间,至少应间隔5周。主要不良影响:治疗剂量的氟西汀报告的主要不良影响主要是头痛、失眠、恶心和神经紧张。较少见的不良影响包括颤抖、出汗、口干、焦虑、嗜睡和腹泻。动物/植物研究:致癌性:动物研究:在大鼠和小鼠中,氟西汀在24个月内按推荐每日剂量的十倍给药并未表现出致癌性。致畸性:动物研究:在大鼠中,
IDENTIFICATION: Fluoxetine is a selective serotonin reuptake inhibitor used as an antidepressant agent. It is soluble in: water, methanol, chloroform and insoluble in hexane, ethyl acetate and benzene. HUMAN EXPOSURE: Main risks and target organs: Fluoxetine is safer in overdose than most other classes of antidepressants. In overdosage, most patients experience only mild neurological and gastroenterological symptoms; significant cardiovascular toxicity is unusual. The serotonergic effects of fluoxetine may be enhanced by combination with other antidepressants, monoamine oxidase inhibitors, carbamazepine or lithium and produce a life-threatening serotoninergic syndrome comprising hyperthermia, tremor and convulsions. Summary of clinical effects: Drowsiness, tremor, headache, blurred vision, dizziness, restlessness, and rarely, seizures and coma. Nausea, vomiting, abdominal pain. Bradycardia, mild hypertension or hypotension. Contraindications: Absolute: Hypersensitivity to fluoxetine. Coadministration of sumatriptan, non-specific monoamine oxidase inhibitors and B-specific monoamine oxidase inhibitors. Relative: Combination therapy with A-specific monoamine oxidase inhibitors or other antidepressants. Pregnancy or lactation. Routes of entry: Oral: Fluoxetine is administered orally. Absorption by route of exposure: Fluoxetine hydrochloride is readily absorbed from the gastrointestinal tract with peak plasma concentrations appearing from 6 to 8 hours after oral administration. The systemic bioavailability is greater than 85 % and does not appear to be affected by food. Distribution by route of exposure: Fluoxetine is widely distributed throughout the body. Plasma protein binding is 94 %. Biological half-life by route of exposure: Fluoxetine has a relatively long and highly variable half-life ranging from 1 to 4 days after a single dose and averaging nearly 70 hours; patients receiving high doses over long periods of time may exhibit prolonged elimination half-lives. The half-life of its active metabolite, norfluoxetine, is about 7 to 9 days. Metabolism: Fluoxetine is extensively metabolized in the liver to a desmethyl metabolite, norfluoxetine, which has activity similar to fluoxetine. Peak plasma concentrations of the active metabolite, norfluoxetine, occur around 76 hours after ingestion. Elimination and excretion: The primary route of elimination appears to be further hepatic metabolism to inactive metabolites which are conjugated and then excreted in the urine. Mode of action: Toxicodynamics: Fluoxetine is a potent inhibitor of serotonin re-uptake by Central Nervous System neurones and may interact with other drugs or circumstances which cause serotonin release. The enhancement of the serotonergic effects may produce a life-threatening serotonin syndrome. Pharmacodynamics: Fluoxetine specifically inhibits neuronal re-uptake of serotonin, thus increasing the concentration of the serotonin at the synapse and reinforcing of serotonergic neuronal transmission. Fluoxetine has little effect on other neurotransmitters. Fluoxetine has no direct effect on the heart. Carcinogenicity: Human studies: there is no evidence of carcinogenicity in patients taking fluoxetine. Teratogenicity: Human studies: a study of 128 women exposed to fluoxetine during the first trimester showed no increase in major fetal malformations. It is not known, however, if the drug is a human teratogen. A neonate whose mother had been taking fluoxetine during most of her pregnancy suffered tachypnea, emesis, continuous crying, irritability, tremor and increased muscle tone; the symptoms resolved within 96 hours. Fluoxetine and norfluoxetine are excreted in breast milk. The effects on the infant are uncertain. Caution should be exercised when fluoxetine is administered to a nursing mother. Interactions: Drug interactions with fluoxetine have been reported with L-tryptophan, L-dopa; monoamine oxidase inhibitors: selegiline, tranylcypromine; tricyclic antidepressants; selective serotonin re-uptake inhibitors: trazodone, zimeldine; benzodiazepines: alprazolam, diazepam; buspirone, lithium, anticonvulsants: carbamazepine, phenytoin, valproate; pentazocine, dextromethorphan, fenfluramine, calcium channel blockers, benztropine, cyproheptadine, clarithromycin. Cannabis, ethanol and LSD. At least 14 days should elapse between discontinuing a MAO-inhibiting antidepressant and introducing fluoxetine. Conversely, because of the long half-life of fluoxetine and its metabolite, norfluoxetine, it is recommended that at least 5 weeks should elapse between discontinuation of fluoxetine and the introduction of a MAO inhibitor. Main adverse effects: The major adverse effects reported with therapeutic doses of fluoxetine are primarily those of headache, insomnia, nausea, and nervousness. Less common adverse effects include tremors, sweating, dry mouth, anxiety, drowsiness, and diarrhea. ANIMAL/PLANT STUDIES: Carcinogenicity: Animal studies: fluoxetine was not carcinogenic in rats and mice at doses ten times the recommended daily dose for 24 months. Teratogenicity: Animal studies: in rats, fluoxetine and norfluoxetine cross the placenta and distribute within the fetus during the periods of organogenesis and postorganogenesis. Levels in fetal tissue are approximately half the corresponding maternal concentrations. Fluoxetine does not impair the fetal growth in rats or rabbits at doses nine and eleven times the maximum daily human dose respectively. Mutagenicity: In vitro: fluoxetine and norfluoxetine did not show mutagenicity in the Ames test. There was no induction of sister-chromatid exchange in the bone marrow of the Chinese Hamster.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 在妊娠和哺乳期间的影响
◉ 母乳喂养期间的使用总结:与其他SSRIs相比,氟西汀在母乳中的平均量更高,长效活性代谢物去甲氟西汀在大多数哺乳婴儿的血清中在产后前2个月内可检测到,之后在少数婴儿中也可检测到。一些母乳喂养的婴儿出现了不良反应,如绞痛、烦躁和嗜睡。一项研究发现婴儿体重增长减少,但其他研究并未发现。在对一些婴儿进行长达一年的随访中,未发现对发育有任何不利影响。 如果母亲需要使用氟西汀,这并不是停止母乳喂养的理由。一种安全评分系统认为在母乳喂养期间使用氟西汀是可能的,尽管其他人并不推荐使用。如果母亲在怀孕期间或如果其他抗抑郁药无效时使用了氟西汀,大多数专家建议在母乳喂养期间不要更换药物。否则,在哺乳新生儿或早产儿时,可能更愿意使用排入母乳量较低的药物。应对母乳喂养的婴儿进行监测,以了解行为副作用,如绞痛、激动、烦躁、喂养困难和体重增长不良。 怀孕和产后期间使用SSRI的母亲可能更容易遇到母乳喂养困难,尽管这可能是她们疾病状态的反应。这些母亲可能需要额外的母乳喂养支持。在怀孕第三季度暴露于SSRI的母乳喂养婴儿比配方奶喂养的婴儿有更低的风险出现新生儿适应不良。 ◉ 对母乳喂养婴儿的影响:一名6天大的母乳喂养婴儿可能因母亲服用氟西汀而出现绞痛、睡眠减少、呕吐和水样大便。另外两份报告称,一名1.76个月大和一名2个月大的母乳喂养婴儿可能因母乳中的氟西汀而出现绞痛。年龄较大的婴儿还表现出过度活跃。 另一名3个月大的婴儿可能因氟西汀而出现烦躁不安,这一情况是由婴儿的儿科医生父亲观察到的。然而,婴儿的母亲和儿科医生并不认同。 一名5个月大的婴儿可能出现高血糖和糖尿,这可能与母乳中的氟西汀有关,这一情况已报告给澳大利亚不良反应药物咨询委员会。 一名3天大的母乳喂养婴儿难以唤醒,停止觅食行为,减少哺乳,并发出呻吟和咕噜声。虽然婴儿在子宫内接触过药物,在出生后的前两天有些昏昏欲睡,但在母亲乳汁到来的第3天症状恶化。这些效应可能是由母乳中的氟西汀引起的。 一名正在服用氟西汀、卡马西平和布他拉米的母乳喂养的3周大婴儿可能出现了药物引起的类似癫痫的活动和发绀。 在一项对4名婴儿的观察性报告中,发现这些婴儿在接触氟西汀12至52周后没有明显的神经学异常。 一项回顾性病例对照队列研究比较了在怀孕期间服用氟西汀并在产后至少哺乳2周的母亲的婴儿与在怀孕期间服用氟西汀但没有哺乳的母亲的婴儿的体重。与对照组相比,接触母乳中氟西汀的26名婴儿体重增长减少,尽管体重仍在正常范围内。 在一项前瞻性研究中,对51名服用氟西汀的哺乳妇女和63名未服用氟西汀的哺乳妇女进行了比较,发现对体重增长没有影响,但报告服用氟西汀的母亲的婴儿出现未指明的副作用频率更高。这项研究的结果仅以摘要形式报告,因此缺少一些细节。 在一项对40名在怀孕期间全程服用氟西汀的妇女进行的前瞻性研究中,21名妇女母乳喂养了她们的婴儿(喂养的程度和持续时间未说明)。对婴儿在15至71个月大时进行的测试发现,母乳喂养的婴儿与未母乳喂养的婴儿在认知、语言或气质测量方面没有差异。 在一项比较31名在怀孕期间服用SSRI抗抑郁药的抑郁症母亲所生婴儿(13名未服用SSRI的抑郁症母亲所生婴儿)的研究中,两组在平均12.9个月的随访中,精神和大多数运动发育均正常。在哺乳期间,三名接受治疗的母亲服用了平均23.3毫克的氟西汀,平均持续3个月。与对照组相比,心理运动发育略有延迟,但无法确定母乳喂养对异常发育的贡献。 在11名母亲及其母乳喂养的婴儿服用氟西汀治疗4至12周后,测量了血小板血清素水平。血小板和神经元都具有相同的血清素转运体,因此这种对血小板血清素的影响可能表明对一些母乳喂养婴儿的神经系统有潜在影响。母亲的氟西汀剂量范围从每天20毫克到40毫克。10名婴儿在开始治疗时不满6个月大,其中4名不满3个月大;6名婴儿是纯母乳喂养。尽管母亲的血小板血清素水平由氟西汀治疗从157 mcg/L降至23 mcg/L,婴儿的平均血清素水平在治疗前为217 mcg/L,治疗后为230 mcg/L。这些发现表明,大多数母乳喂养的婴儿摄入的氟西汀量不足以影响血小板的血清素转运。然而,三名婴儿的血小板血清
◉ Summary of Use during Lactation:The average amount of drug in breastmilk is higher with fluoxetine than with most other SSRIs and the long-acting, active metabolite, norfluoxetine, is detectable in the serum of most breastfed infants during the first 2 months postpartum and in a few thereafter. Adverse effects such as colic, fussiness, and drowsiness have been reported in some breastfed infants. Decreased infant weight gain was found in one study, but not in others. No adverse effects on development have been found in a few infants followed for up to a year. If fluoxetine is required by the mother, it is not a reason to discontinue breastfeeding. A safety scoring system finds fluoxetine use to be possible during breastfeeding, although others do not recommend its use. If the mother was taking fluoxetine during pregnancy or if other antidepressants have been ineffective, most experts recommend against changing medications during breastfeeding. Otherwise, agents with lower excretion into breastmilk may be preferred, especially while nursing a newborn or preterm infant. The breastfed infant should be monitored for behavioral side effects such as colic, agitation, irritability, poor feeding, and poor weight gain. Mothers taking an SSRI during pregnancy and postpartum may have more difficulty breastfeeding, although this might be a reflection of their disease state. These mothers may need additional breastfeeding support. Breastfed infants exposed to an SSRI during the third trimester of pregnancy have a lower risk of poor neonatal adaptation than formula-fed infants. ◉ Effects in Breastfed Infants:Colic, decreased sleep, vomiting and watery stools occurred in a 6-day-old breastfed infant probably caused by maternal fluoxetine. Two other reports of colic in breastfed infants, a 1.76-month-old and a 2-month-old, were possibly caused by fluoxetine in breastmilk. The older of the two also exhibited hyperactivity. Another case of possible increased irritability in a 3-month-old was noted by a pediatrician observer, who was the infant’s father. However, the mother and the infant’s pediatrician disagreed. Occurrence of hyperglycemia and glycosuria in a 5-month-old, possibly from fluoxetine in breastmilk was reported to the Australian Adverse Drug Reaction Advisory Committee. A 3-day-old breastfed infant was difficult to arouse, ceased rooting behavior, decreased nursing, and was moaning and grunting. Although the infant had been exposed in utero and was somewhat drowsy during the first 2 days of life, symptoms became worse after the mother's milk came in on day 3. These effects were probably caused by fluoxetine in breastmilk. Possible drug-induced seizure-like activity and cyanosis occurred in a breastfed 3-week-old breastfed infant whose mother was taking fluoxetine, carbamazepine and buspirone during pregnancy and breastfeeding. One observational report of 4 infants found no apparent neurological abnormalities following exposure to fluoxetine in milk for 12 to 52 weeks. A retrospective, case-control, cohort study compared the weights of the infants of mothers who took fluoxetine during pregnancy and breastfed for at least 2 weeks postpartum to the infants of mothers who took fluoxetine during pregnancy and did not breastfeed. Compared to controls, decreased weight gain occurred among the 26 infants exposed postpartum to fluoxetine in breastmilk, although the weights were still in the normal range. A prospective study of 51 nursing women taking fluoxetine and 63 nursing women who took no fluoxetine found no effect on weight gain, but reported a greater frequency of unspecified side effects in the infants of mothers who took fluoxetine. This study's results have been reported only in abstract form, so some details are lacking. In a prospective study of 40 women who took fluoxetine throughout pregnancy, 21 breastfed their infants (extent and duration not stated). Testing of the infants at 15 to 71 months of age found no differences in cognitive, language or temperament measurements between infants who were breastfed and those who were not. In a study comparing the 31 infants of depressed mothers who took an SSRI during pregnancy for major depression with 13 infants of depressed mothers who did not take an SSRI, mental development and most motor development in both groups was normal at follow-up averaging 12.9 months. Three of the treated mothers took fluoxetine in doses averaging 23.3 mg daily for an average of 3 months while breastfeeding their infants. Psychomotor development was slightly delayed compared to controls, but the contribution of breastfeeding to abnormal development could not be determined. Platelet serotonin levels were measured in 11 mothers and their breastfed infants after 4 to 12 weeks of fluoxetine therapy. Platelets and neurons both have the same serotonin transporter, so this effect on platelet serotonin might indicate potential effects on the nervous system of some breastfed infants. Maternal fluoxetine dosages ranged from 20 to 40 mg daily. Ten of the infants were under 6 months of age and 4 were under 3 months of age at the start of therapy; 6 were exclusively breastfed. Although maternal platelet serotonin levels were decreased from 157 mcg/L to 23 mcg/L by fluoxetine therapy, average infant serotonin levels were 217 mcg/L before and 230 mcg/L after maternal therapy. These findings indicate that the amount of fluoxetine ingested by the infants was not sufficient to affect serotonin transport in platelets in most breastfed infants. However, 3 infants experienced drops in platelet serotonin of 13, 24 and 60%, respectively. The latter infant was the only one with measurable fluoxetine plasma levels as well as norfluoxetine, but the infant had no discernible adverse effects. One other infant had a delay in motor development at 24 weeks, but had normal mental development; 6 other infants were within 1 standard deviation of normal in both measures when tested between 24 and 56 weeks of age. Twenty-nine mothers who took fluoxetine in an average dosage of 34.6 mg daily for depression or anxiety starting no later than 4 weeks postpartum, breastfed their infants exclusively for 4 months and at least 50% during months 5 and 6. Their infants had 6-month weight gains that were normal according to national growth standards and mothers reported no abnormal effects in their infants. One study of side effects of SSRI antidepressants in nursing mothers found no adverse reactions that required medical attention in one infant whose mother was taking fluoxetine. No specific information on maternal fluoxetine dosage, extent of breastfeeding or infant age was reported. Eleven infants who were breastfed (extent and duration not stated) during maternal use of fluoxetine for depression (n = 5) or panic disorder (n = 6) had normal weight gain at 12 months of age that was not significantly different from a control group of infants whose mothers took no psychotropic medications. Neurologic development was also normal at 12 months of age. In 1 breastfed (extent not stated) infant aged 11 weeks whose mother was taking fluoxetine 20 mg daily, no adverse reactions were noted clinically at the time of the study. A small study compared the reaction to pain in infants of depressed mothers who had taken an SSRI during pregnancy alone or during pregnancy and nursing to a control group of unexposed infants of nondepressed mothers. Infants exposed to an SSRI either prenatally alone or prenatally and postnatally via breastmilk had blunted responses to pain compared to control infants. Seven of the 30 infants were exposed to fluoxetine. Because there was no control group of depressed, nonmedicated mothers, an effect due to maternal behavior caused by depression could not be ruled out. The authors stressed that these findings did not warrant avoiding drug treatment of depression during pregnancy or avoiding breastfeeding during SSRI treatment. An infant was born to a mother taking fluoxetine 40 mg daily, oxycodone 20 mg 3 times daily, and quetiapine 400 mg daily. The infant was breastfed 6 to 7 times daily and was receiving 120 mcg of oral morphine 3 times daily for opiate withdrawal. Upon examination at 3 months of age, the infant's weight was at the 25th percentile for age, having been at the 50th percentile at birth. The authors attributed the weight loss to opiate withdrawal. The infant's Denver developmental score was equal to his chronological age. An uncontrolled online survey compiled data on 930 mothers who nursed their infants while taking an antidepressant. Infant drug discontinuation symptoms (e.g., irritability, low body temperature, uncontrollable crying, eating and sleeping disorders) were reported in about 10% of infants. Mothers who took antidepressants only during breastfeeding were much less likely to notice symptoms of drug discontinuation in their infants than those who took the drug in pregnancy and lactation. A cohort of 247 infants exposed to an antidepressant in utero during the third trimester of pregnancy were assessed for poor neonatal adaptation (PNA). Of the 247 infants, 154 developed PNA. Infants who were exclusively given formula had about 3 times the risk of developing PNA as those who were exclusively or partially breastfed. Fifteen of the infants were exposed to fluoxetine in utero. A late preterm infant was born to a mother who took fluoxetine 60 mg daily throughout pregnancy and during exclusive breastfeeding. At 7 days of age, the infant was found to be having jerking movements, with hypertonia and hyperreflexia as well as tachypnea and compensated metabolic acidosis. The infant's Finnegan scores were the range of 7 to 10. On day 8 of life, the infant had a serum fluoxetine level of 120 mcg/L, which is similar to therapeutic adult levels. Breastfeeding was discontinued and after 5 days of formula feeding the infant's Finnegan scores had decreased to a range of 3 to 6. After 10 days of formula, most symptoms had subsided. At 3 months of age, the infant was growing and developing normally. The infant's symptoms were attributed to serotonin syndrome caused by the high levels of fluoxetine rather than to withdrawal. The reaction was probably caused by fluoxetine and breastfeeding might have contributed to maintaining the high fluoxetine levels after birth. A woman with narcolepsy took sodium oxybate 4 grams each night at 10 pm and 2 am as well as fluoxetine 20 mg and cetirizine 5 mg daily throughout pregnancy and postpartum. She breastfed her infant except for 4 hours after the 10 pm oxybate dose and 4 hours after the 2 am dose. She either pumped breastmilk or breastfed her infant just before each dose of oxybate. The infant was exclusively breastfed or breastmilk fed for 6 months when solids were introduced. The infant was evaluated at 2, 4 and 6 months with the Ages and Stages Questionnaires, which were withing the normal range as were the infant's growth and pediatrician's clinical impressions regarding the infant's growth and development. Two women were treated with fluoxetine 20 mg daily during the third trimester of pregnancy and during breastfeeding. Pediatric evaluations including neurologic assessments and brain ultrasound were conducted during the first 24 hours postpartum. Further follow-up was conducted at 6 or more months of age. Infant clinical status was comparable to unexposed infants from the same pediatric department. ◉ Effects on Lactation and Breastmilk:Fluoxetine has caused increased prolactin levels and galactorrhea in nonpregnant, nonnursing patients. Euprolactinemic galactorrhea has also been reported. In a study of cases of hyperprolactinemia and its symptoms (e.g., gynecomastia) reported to a French pharmacovigilance center, fluoxetine was found to have a 3.6-fold increased risk of causing hyperprolactinemia compared to other drugs. Preliminary animal and in vitro studies found that fluoxetine may have some estrogenic activity. The prolactin level in a mother with established lactation may not affect her ability to breastfeed. In a small prospective study, 8 primiparous women who were taking a serotonin reuptake inhibitor (SRI; 3 taking fluoxetine and 1 each taking citalopram, duloxetine, escitalopram, paroxetine or sertraline) were compared to 423 mothers who were not taking an SRI. Mothers taking an SRI had an onset of milk secretory activation (lactogenesis II) that was delayed by an average of 16.7 hours compared to controls (85.8 hours postpartum in the SRI-treated mothers and 69.1 h in the untreated mothers), which doubled the risk of delayed feeding behavior compared to the untreated group. However, the delay in lactogenesis II may not be clinically important, since there was no statistically significant difference between the groups in the percentage of mothers experiencing feeding difficulties after day 4 postpartum. A case control study compared the rate of predominant breastfeeding at 2 weeks postpartum in mothers who took an SSRI antidepressant throughout pregnancy and at delivery (n = 167) or an SSRI during pregnancy only (n = 117) to a control group of mothers who took no antidepressants (n = 182). Among the two groups who had taken an SSRI, 33 took citalopram, 18 took escitalopram, 63 took fluoxetine, 2 took fluvoxamine, 78 took paroxetine, and 87 took sertraline. Among the women who took an SSRI, the breastfeeding rate at 2 weeks postpartum was 27% to 33% lower than mother who did not take antidepressants, with no statistical difference in breastfeeding rates between the SSRI-exposed groups. An observational study looked at outcomes of 2859 women who took an antidepressant during the 2 years prior to pregnancy. Compared to women who did not take an antidepressant during pregnancy, mothers who took an antidepressant during all 3 trimesters of pregnancy were 37% less likely to be breastfeeding upon hospital discharge. Mothers who took an antidepressant only during the third trimester were 75% less likely to be breastfeeding at discharge. Those who took an antidepressant only during the first and second trimesters did not have a reduced likelihood of breastfeeding at discharge. The antidepressants used by the mothers were not specified. A retrospective cohort study of hospital electronic medical records from 2001 to 2008 compared women who had been dispensed an antidepressant during late gestation (n = 575; fluoxetine n = 21) to those who had a psychiatric illness but did not receive an antidepressant (n = 1552) and mothers who did not have a psychiatric diagnosis (n = 30,535). Women who received an antidepressant were 37% less likely to be breastfeeding at discharge than women without a psychiatric diagnosis, but no less likely to be breastfeeding than untreated mothers with a psychiatric diagnosis. In a study of 80,882 Norwegian mother-infant pairs from 1999 to 2008, new postpartum antidepressant use was reported by 392 women and 201 reported that they continued antidepressants from pregnancy. Compared with the unexposed comparison group, late pregnancy antidepressant use was associated with a 7% reduced likelihood of breastfeeding initiation, but with no effect on breastfeeding duration or exclusivity. Compared with the unexposed comparison group, new or restarted antidepressant use was associated with a 63% reduced likelihood of predominant, and a 51% reduced likelihood of any breastfeeding at 6 months, as well as a 2.6-fold increased risk of abrupt breastfeeding discontinuation. Specific antidepressants were not mentioned.
来源:Drugs and Lactation Database (LactMed)
毒理性
  • 相互作用
当氟西汀与苯妥英同时使用时,已报告出现血浆中苯妥英浓度升高,导致中毒症状;建议谨慎并密切监测。
Elevated plasma phenytoin concentrations resulting in symptoms of toxicity have been reported when fluoxetine was used concurrently with phenytoin; caution and close monitoring are suggested.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
由于氟西汀可能会抑制阿司咪唑的代谢,导致血药水平升高和心脏节律不齐的风险,包括尖端扭转型室性心动过速,因此不推荐同时使用。
Because of the possibility that fluoxetine may inhibit the metabolism of astemizole, leading to increased blood levels and risk of cardiac arrhythmias, including torsades de pointes, concurrent use is not recommended.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
与氟西汀联合使用时,有报道称锂浓度增加和减少,以及一些锂中毒的案例;建议密切监测锂浓度。
Both increased and decreased lithium concentrations, as well as some cases of lithium toxicity, have been reported with concomitant fluoxetine use; close monitoring of lithium concentrations is recommended.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
盐酸氟西汀口服给药后似乎能很好地从胃肠道吸收。到目前为止,人体内氟西汀的口服生物利用度尚未完全阐明,但至少有60-80%的口服剂量似乎被吸收。然而,目前尚不清楚口服剂量中有多少比例未经改变就到达系统循环。来自动物的有限数据表明,药物在口服给药后可能在肝脏和/或肺部经历首次通过代谢和提取。在这些动物(比格犬)中,大约72%的口服剂量未改变就到达系统循环。食物似乎会略微降低氟西汀在人体中的吸收速率,但不会影响吸收的程度。
Fluoxetine hydrochloride appears to be well absorbed from the GI tract following oral administration. The oral bioavailability of fluoxetine in humans has not been fully elucidated to date, but at least 60-80% of an oral dose appears to be absorbed. However, the relative proportion of an oral dose reaching systemic circulation unchanged currently is not known. Limited data from animals suggest that the drug may undergo first-pass metabolism and extraction in the liver and/or lung following oral administration. In these animals (beagles), approximately 72% of an oral dose reached systemic circulation unchanged. Food appears to cause a slight decrease in the rate, but not the extent of absorption of fluoxetine in humans.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
氟西汀及其代谢物在人体组织和体液中的分布尚未被完全表征。在长期给动物使用氟西汀期间获得的有限药代动力学数据表明,该药物及其一些代谢物,包括去甲氟西汀,在体内组织中广泛分布,以肺和肝脏中浓度最高。该药物能穿过人类和动物的血脑屏障。在动物中,据报道在单次给药后1小时,氟西汀与去甲氟西汀在大脑皮层、纹状体、海马、下丘脑、脑干和小脑中的比例相似。
Distribution of fluoxetine and its metabolites into human body tissues and fluids has not been fully characterized. Limited pharmacokinetic data obtained during long term administration of fluoxetine to animals suggest that the drug and some of its metabolites, including norfluoxetine, are widely distributed in body tissues, with highest concentrations occurring in the lungs and liver. The drug crosses the blood-brain barrier in humans and animals. In animals, fluoxetine: norfluoxetine ratios reportedly were similar in the cerebral cortex, corpus striatum, hippocampus, hypothalamus, brain stem, and cerebellum 1 hr after administration of single dose of the drug.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
为了确认氟西汀及其代谢物对胚胎/胎儿的暴露情况,本研究使用了解剖和全身自动放射性显影技术,以确定在给予妊娠12天和18天的Wistar大鼠单次口服12.5 mg/kg剂量的(14)C氟西汀后1、4、8和24小时内胎盘转移和胎儿分布情况。在妊娠第12天(器官形成期)和第18天(器官形成期后),给药后4-8小时,胎盘、胚胎/胎儿、羊水和母体肾脏、大脑和肺中的放射性碳达到峰值浓度,并在24小时后略有下降。在所有时间点上,母体肺部的放射性碳含量最高。胎盘和母体大脑、肾脏和肝脏含有中等水平的放射性,而胚胎/胎儿组织、羊水和母体血浆含有低水平的放射性。妊娠第18天4、8和24小时的平均胎儿放射性碳浓度高于妊娠第12天的平均胚胎浓度。放射性分析表明,氟西汀和去甲氟西汀的总浓度占胚胎/胎儿组织中总放射性碳浓度的63-80%。结果表明,氟西汀在胚胎/胎儿和母体组织中的水平在早期时间点最高,并随时间下降,而去甲氟西汀的组织水平在24小时时间点最高。全身自动放射性显影技术显示,与(14)C氟西汀及其代谢物相关的放射性在给药后4小时穿过胎盘并分布到18天的胎儿全身。对自动放射性显影图的可视和定量评估表明,大脑和胸腺的胎儿放射性碳浓度最高。这些研究结果表明,氟西汀和去甲氟西汀在器官形成期和器官形成期后穿过胎盘并在胚胎/胎儿内分布,并确认了在之前的负鼠畸胎学和生殖研究中父母和代谢物的胚胎/胎儿暴露情况。
In order to confirm embryonic/fetal exposure to fluoxetine and/or metabolites, dissection and whole-body autoradiographic techniques were utilized to determine the placental transfer and fetal distribution in 12 and 18 day pregnant Wistar rats 1, 4, 8, and 24 hr following a single oral 12.5 mg/kg dose of (14)C fluoxetine. On gestation Days 12 (organogenesis) and 18 (postorganogenesis), peak concentrations of radiocarbon occurred 4-8 hr after dose administration in the placenta, embryo/fetus, amniotic fluid, and maternal kidney, brain, and lung, and declined slightly at 24 hr postdose. Maternal lung contained the highest tissue concentration of radiocarbon at all time points. Placenta and maternal brain, kidney, and liver contained moderate levels of radioactivity, while embryonic/fetal tissue, amniotic fluid, and maternal plasma contained low levels of radioactivity. Mean fetal concentrations of radiocarbon at 4, 8, and 24 hr on gestation Day 18 were higher than mean embryonic concentrations on Day 12 of gestation. Analytical characterization of radioactivity indicated that combined fluoxetine and norfluoxetine concentrations accounted for 63-80% of the total radiocarbon concentrations in embryonic/fetal tissue. Results indicated that embryonic/fetal and maternal tissue levels of fluoxetine were greatest at early time points and declined with time, while norfluoxetine tissue levels were highest at the 24 hr time point. Whole-body autoradiographic techniques demonstrated that radioactivity associated with (14)C fluoxetine and/or its metabolites traversed the placenta and distributed throughout the 18 day fetus 4 hr following dose administration. Visual and quantitative evaluations of the autoradiograms indicated that the highest fetal concentrations of radiocarbon were associated with brain and thymus. Results from these studies indicate that fluoxetine and norfluoxetine traverse the placenta and distribute within the embryo/fetus during the periods of organogenesis and postorganogenesis and confirm embryonic/fetal exposure of parent and metabolite in previous negative rat teratology and reproductive studies.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
消除:肾脏:80%通过尿液排出(11.6%氟西汀,7.4%氟西汀葡萄糖醛酸苷,6.8%去甲氟西汀,8.2%去甲氟西汀葡萄糖醛酸苷,>20%马尿酸,46%其他);胆道:大约15%通过粪便排出;透析中——由于高蛋白结合和分布体积大,不可透析。
Elimination: Renal: 80% excreted in the urine (11.6% fluoxetine, 7.4% fluoxetine glucuronide, 6.8% norfluoxetine, 8.2% norfluoxetine glucuronide, >20% hippuric acid, 46% other); Biliary: Approximately 15% in the feces; In dialysis--Not dialyzable because of high protein binding and large volume of distribution.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1(b)
  • 危险品标志:
    Xn
  • 安全说明:
    S26,S36/37/39
  • 危险类别码:
    R22,R41,R38
  • WGK Germany:
    3
  • 海关编码:
    2922199090
  • 危险品运输编号:
    3249
  • 危险类别:
    6.1(b)
  • 包装等级:
    III
  • RTECS号:
    UI4050000
  • 危险标志:
    GHS05,GHS07,GHS09
  • 危险性描述:
    H302,H318,H400
  • 危险性防范说明:
    P273,P280,P305 + P351 + P338
  • 储存条件:
    请将贮藏器密封保存,并存放在阴凉干燥处。务必确保工作环境具有良好的通风或排气设施。

SDS

SDS:109c211ebbeb7b43cfe93c36e7f0b1c4
查看

模块 1. 化学品
1.1 产品标识符
: 氟西汀 盐酸盐
产品名称
1.2 鉴别的其他方法
(±)-N-Methyl-γ-[4-(trifluoromethyl)phenoxy]benzenepropanaminehydrochloride
Prozac®
LY-110,140hydrochloride
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
急性毒性, 经口 (类别 4)
严重眼睛损伤 (类别 1)
急性水生毒性 (类别 1)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 危险
危险申明
H302 吞咽有害。
H318 造成严重眼损伤。
H400 对水生生物毒性极大。
警告申明
预防措施
P264 操作后彻底清洁皮肤。
P270 使用本产品时不要进食、饮水或吸烟。
P273 避免释放到环境中。
P280 穿戴防护手套/ 眼保护罩/ 面部保护罩。
事故响应
P301 + P312 如果吞咽并觉不适: 立即呼叫解毒中心或就医。
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P310 立即呼叫中毒控制中心或医生.
P330 漱口。
P391 收集溢出物。
废弃处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: (±)-N-Methyl-γ-[4-
别名
(trifluoromethyl)phenoxy]benzenepropanaminehydrochloride
Prozac®
LY-110,140hydrochloride
: C17H18F3NO · HCl
分子式
: 345.79 g/mol
分子量
组分 浓度或浓度范围
Methyl[3-phenyl-3-[4-(trifluoromethyl)phenoxy]propyl]ammonium chloride
<=100%
化学文摘登记号(CAS 56296-78-7
No.) 260-101-2
EC-编号

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
切勿给失去知觉者通过口喂任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
症状和征兆包括头痛,眩晕,疲倦,肌肉乏力,磕睡,严重时会失去知觉。,
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氮氧化物, 氯化氢气体, 氟化氢
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
使用个人防护用品。 避免粉尘生成。 避免吸入蒸气、烟雾或气体。 保证充分的通风。
人员疏散到安全区域。 避免吸入粉尘。
6.2 环境保护措施
如能确保安全,可采取措施防止进一步的泄漏或溢出。 不要让产品进入下水道。
一定要避免排放到周围环境中。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
收集和处置时不要产生粉尘。 扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免形成粉尘和气溶胶。
在有粉尘生成的地方,提供合适的排风设备。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
根据良好的工业卫生和安全规范进行操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
面罩與安全眼鏡请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟) 检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
完全接触
物料: 丁腈橡胶
最小的层厚度 0.11 mm
溶剂渗透时间: 480 min
测试过的物质Dermatril® (KCL 740 / Z677272, 规格 M)
飞溅保护
物料: 丁腈橡胶
最小的层厚度 0.11 mm
溶剂渗透时间: 480 min
测试过的物质Dermatril® (KCL 740 / Z677272, 规格 M)
, 测试方法 EN374
如果以溶剂形式应用或与其它物质混合应用,或在不同于EN
374规定的条件下应用,请与EC批准的手套的供应商联系。
这个推荐只是建议性的,并且务必让熟悉我们客户计划使用的特定情况的工业卫生学专家评估确认才可.
这不应该解释为在提供对任何特定使用情况方法的批准.
身体保护
全套防化学试剂工作服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如危险性评测显示需要使用空气净化的防毒面具,请使用全面罩式多功能微粒防毒面具N100型(US
)或P3型(EN
143)防毒面具筒作为工程控制的候补。如果防毒面具是保护的唯一方式,则使用全面罩式送风防毒
面具。 呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
无数据资料
f) 沸点、初沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
无数据资料
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
辛醇--水的分配系数的对数值: 1.8 在 25 °C
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
半数致死剂量 (LD50) 经口 - 大鼠 - 452 mg/kg
皮肤刺激或腐蚀
皮肤 - 兔子 - 无皮肤刺激
眼睛刺激或腐蚀
眼睛 - 兔子 - 严重的眼睛刺激
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
生殖毒性 - 兔子 - 经口
母体效应:其他影响。
生殖毒性 - 大鼠 - 经口
对新生儿的影响:死婴。 对新生儿的影响:存活率(例如#第4天存活率每#出生成活数)。
对新生儿的影响:生长统计数据(例如体重增长的减少)。
发育毒性 - 大鼠 - 皮下的
特定发育异常:中枢神经系统。 对新生儿的影响:生长统计数据(例如体重增长的减少)。
发育毒性 - 大鼠 - 经口
特定发育异常:皮肤及皮肤附属物。
发育毒性 - 人 - 人 - 经口
特定发育异常:中枢神经系统。
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 可能引起呼吸道刺激。
摄入 误吞对人体有害。
皮肤 通过皮肤吸收可能有害。 可能引起皮肤刺激。
眼睛 引起眼睛灼伤。
接触后的征兆和症状
症状和征兆包括头痛,眩晕,疲倦,肌肉乏力,磕睡,严重时会失去知觉。,
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: UI4050000

模块 12. 生态学资料
12.1 生态毒性
对鱼类的毒性 半数致死浓度(LC50) - 虹鳟 (红鳟鱼) - 1.57 mg/l - 96.0 h
对水蚤和其他水生无脊 半数效应浓度(EC50) - 大型蚤 (水蚤) - 0.94 mg/l - 48 h
椎动物的毒性
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
对水生生物毒性极大。

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: 3077 国际海运危规: 3077 国际空运危规: 3077
14.2 联合国运输名称
欧洲陆运危规: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Methyl[3-phenyl-3-[4-
(trifluoromethyl)phenoxy]propyl]ammonium chloride)
国际海运危规: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Methyl[3-phenyl-3-[4-
(trifluoromethyl)phenoxy]propyl]ammonium chloride)
国际空运危规: Environmentally hazardous substance, solid, n.o.s. (Methyl[3-phenyl-3-[4-
(trifluoromethyl)phenoxy]propyl]ammonium chloride)
14.3 运输危险类别
欧洲陆运危规: 9 国际海运危规: 9 国际空运危规: 9
14.4 包裹组
欧洲陆运危规: III 国际海运危规: III 国际空运危规: III
14.5 环境危险
欧洲陆运危规: 是 国际海运危规 国际空运危规: 是
海洋污染物(是/否): 是
14.6 对使用者的特别提醒
进一步信息
危险品独立包装,液体5升以上或固体5公斤以上,每个独立包装外和独立内包装合并后的外包装上都必须有EHS
标识 (根据欧洲 ADR 法规 2.2.9.1.10, IMDG 法规 2.10.3),


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

制备方法与用途

盐酸氟西汀 简介

盐酸氟西汀是全球第一个上市的选择性5-羟色胺再摄取抑制剂(SSRIs)的抗抑郁药物,商品名为“百优解” (Prozac),由美国礼来公司率先研制成功。在1986年比利时首先批准其用于抑郁症治疗后,于同年年底获得FDA在美国市场的上市许可,并以商品名Prozac成为美国销量最好的抗抑郁药。随后,氟西汀陆续进入英国、法国等西方国家市场,并在全球范围内销售。1995年4月,该药物首次在中国市场获批,商品名为百优解(后更名为百忧解),剂型为片剂和胶囊,规格为20mg。目前已有十余家国内药企获得了生产批文。

由于氟西汀是第一个上市的5-HT再摄取抑制剂类抗抑郁药物,其与传统的三环类抗抑郁剂具有不同的结构和药理机制。它疗效确切、副作用轻,在上市后即受到广泛青睐,并且销售额逐年大幅增长。自1970年代礼来公司研究开发出氟西汀以来,该药物创造了诸多辉煌,堪称一代传奇,开创了抑郁症治疗的新篇章。尽管2001年后市场有所下滑,但目前仍是抗抑郁治疗的常用药物之一。

药理作用

氟西汀能阻断5-HT2A受体,并通过抑制5-HT2A受体恢复多巴胺(DA)和去甲肾上腺素(NE)的水平。同时,它还能通过5-HT2C受体解除γ-氨基丁酸(GABA)神经元对NE和DA释放的抑制作用。这些机制不仅提高突触间隙中5-HT浓度,还直接和间接恢复了DA和NE水平,具有多巴胺和去甲肾上腺素脱抑制特性(NDDI)。

应用

盐酸氟西汀可用于治疗各种抑郁性精神障碍,包括轻度或重度抑郁症、双相情感性精神障碍的抑郁症、心因性抑郁及抑郁性神经症。此外,它也可用于治疗器质性疾病伴有的抑郁症状、老年期抑郁症、精神分裂症后抑郁以及强迫症、恐惧症和焦虑症状,并可作为减肥及戒烟的辅助治疗。

不良反应

盐酸氟西汀的主要不良反应包括恶心、神经过敏、失眠等,这些通常在停药后会自行消失。其他常见副作用还包括头痛、焦虑、多汗、腹泻、视力模糊、口干以及性功能障碍。

抗抑郁药

盐酸氟西汀是一种选择性的5-羟色胺再摄取抑制剂(SSRI),适用于治疗各种抑郁症,包括轻性和重性抑郁症、双相情感性精神障碍的抑郁症、心因性抑郁及抑郁性神经症。其作用机制是通过抑制神经元从突触间隙中摄取5-羟色胺来增加间隙中可供实际利用的这种神经递质,从而改善情感状态,治疗抑郁性精神障碍。

常见不良反应包括口干、食欲减退、恶心、失眠和乏力,少数病例可能出现焦虑或头痛。由于盐酸氟西汀半衰期较长,肝肾功能较差者或老年患者应适当减少剂量;儿童应用时应遵照医嘱;癫痫史患者、妊娠或哺乳期妇女慎用。如果出现皮疹或发热,应立即停药并进行相应处理。不宜与单胺氧化酶抑制剂(MAOIs)同时使用。

体内研究

在动物成年雄性SD大鼠中,氟西汀能够扭转不可避免的冲击导致的逃避潜伏期,并且当与奥兰扎平联用时,表现出稳健、持久的细胞外多巴胺水平和去甲肾上腺素水平增加,其效果显著大于两种药物单独使用。

此外,在急性全身给药后,氟西汀产生强劲而持续增加的多巴胺和去甲肾上腺素的胞外浓度。氟西汀还能加速未成熟神经元的成熟,并增强海马齿状回的神经依赖性长时程增强(LTP)。与舍曲林、帕罗西汀、文拉法辛等相比,氟西汀在前额叶皮层中增加多巴胺和去甲肾上腺素的细胞外水平。这些体内研究表明了氟西汀对神经系统的影响及其潜在机制。

反应信息

  • 作为反应物:
    描述:
    盐酸氟西汀silver nitrate三乙胺三苯基膦 作用下, 以 二氯甲烷乙腈 为溶剂, 反应 15.25h, 生成 氟西汀
    参考文献:
    名称:
    NO-SSRIs: Nitric Oxide Chimera Drugs Incorporating a Selective Serotonin Reuptake Inhibitor
    摘要:
    Hybrid nitrate drugs have been reported to provide NO bioactivity to ameliorate side effects or to provide ancillary therapeutic activity. Hybrid nitrate selective serotonin reuptake inhibitors (NO-SSRIs) were prepared to improve the therapeutic profile of this drug class. A synthetic strategy for use of a thiocarbamate linker was developed, which in the case of NO-fluoxetine facilitated hydrolysis to fluoxetine at pH 7.4 within 7 h. In cell culture, NO-SSRIs were weak inhibitors of the serotonin transporter; however, in the forced swimming task (FST) in rats, NO-fluoxetine demonstrated classical antidepressant activity. Comparison of NO-fluoxetine, with fluoxetine, and an NO-chimera nitrate developed for Alzheimer's disease (GT-1061) were made in the step through passive avoidance (STPA) test of learning and memory in rats treated with scopolamine as an amnesic agent. Fluoxetine was inactive, whereas NO-fluoxetine and GT-1061 both restored long-term memory. GT-1061 also produced antidepressant behavior in FST. These data support the potential for NO-SSRIs to overcome the lag in onset of therapeutic action and provide cotherapy of neuropathologies concomitant with depression.
    DOI:
    10.1021/ml2000033
  • 作为产物:
    描述:
    氟西汀盐酸 作用下, 以 乙醚 为溶剂, 反应 0.5h, 生成 盐酸氟西汀
    参考文献:
    名称:
    Synthesis of 3-aminomethyl-1-propanol, a fluoxetine precursor
    摘要:
    本发明涉及一种合成氟西汀盐酸盐的方法。该方法包括通过将苯基-3-甲基氨基-1-丙烯-1-酮还原为3-甲基氨基-1-苯基-1-丙醇,使用硼氢化钠和乙酸进行合成。
    公开号:
    US20040102651A1
  • 作为试剂:
    描述:
    参考文献:
    名称:
    Production of fluoxetine and new intermediates
    摘要:
    4-甲基-3-[(4-三氟甲基)苯氧基]-3-苯基丙胺(I)是通过将3-二甲氨基-1-苯基-1-丙醇(III)与卤代甲酸酯(VIII)反应,得到取代的丙基氨基甲酸酯(IX),在碱性条件下水解得到甲基氨基-1-苯基-1-丙醇(X)。然后,将甲基氨基-1-苯基-1-丙醇与4-卤苯三氟化物(XI)反应,制备出氟西汀(I)。在此过程中,还获得了某些取代的氨基甲酸酯作为中间体。
    公开号:
    US05225585A1
点击查看最新优质反应信息

文献信息

  • NAPHTHALENE-BASED INHIBITORS OF ANTI-APOPTOTIC PROTEINS
    申请人:Pellecchia Maurizio
    公开号:US20090105319A1
    公开(公告)日:2009-04-23
    Methods of using apogossypol and its derivatives for treating inflammation is disclosed. Also, there is described a group of compounds having structure A, or a pharmaceutically acceptable salt, hydrate, N-oxide, or solvate thereof are provided: wherein each R is independently selected from the group consisting of H, C(O)X, C(O)NHX, NH(CO)X, SO 2 NHX, and NHSO 2 X, wherein X is selected from the group consisting of an alkyl, a substituted alkyl, an aryl, a substituted aryl, an alkylaryl, and a heterocycle. Compounds of group A may be used for treating various diseases or disorders, such as cancer.
    使用阿波戈司宝及其衍生物治疗炎症的方法被披露。此外,还描述了一组具有结构A的化合物,或其药学上可接受的盐、水合物、N-氧化物或溶剂化合物: 其中每个R独立地选自H、C(O)X、C(O)NHX、NH(CO)X、SO2NHX和NHSO2X组成的组,其中X选自烷基、取代烷基、芳基、取代芳基、烷基芳基和杂环的组。A组化合物可用于治疗各种疾病或疾病,如癌症。
  • Amino-substituted heterocycles, compositions thereof, and methods of treatment therewith
    申请人:D'Sidocky Neil R.
    公开号:US20080242694A1
    公开(公告)日:2008-10-02
    Provided herein are Heterocyclic Compounds having the following structure: wherein R 1 , R 2 , X, Y and Z are as defined herein, compositions comprising an effective amount of a Heterocyclic Compound and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway comprising administering an effective amount of a Heterocyclic Compound to a patient in need thereof.
    本文提供具有以下结构的杂环化合物: 其中R1、R2、X、Y和Z如本文所定义,包含有效量杂环化合物的组合物,以及治疗或预防癌症、炎症性疾病、免疫疾病、代谢性疾病以及通过给予患者需要的有效量杂环化合物来抑制激酶途径治疗或预防的疾病的方法。
  • [EN] HETEROCYCLIC AMIDES USEFUL AS PROTEIN MODULATORS<br/>[FR] AMIDES HÉTÉROCYCLIQUES UTILES EN TANT QUE MODULATEURS DE PROTÉINE
    申请人:GLAXOSMITHKLINE IP DEV LTD
    公开号:WO2017175147A1
    公开(公告)日:2017-10-12
    Disclosed are compounds having the formula (I-N), wherein q, r, s, A, B, C, RA1, RA2, RB1, RB2, RC1, RC2, R3, R4, R5, R6, R14, R15, R16, and R17, are as defined herein, or a tautomer thereof, or a salt, particularly a pharmaceutically acceptable salt, thereof.
    揭示了具有化学式(I-N)的化合物,其中q、r、s、A、B、C、RA1、RA2、RB1、RB2、RC1、RC2、R3、R4、R5、R6、R14、R15、R16和R17如本文所定义,或其互变异构体,或其盐,特别是其药用可接受盐。
  • [EN] MODULATORS OF STIMULATOR OF INTERFERON GENES (STING) USEFUL IN TREATING HIV<br/>[FR] MODULATEURS DE STIMULATEUR DES GÈNES (STING) D'INTERFÉRON UTILES DANS LE TRAITEMENT DU VIH
    申请人:GLAXOSMITHKLINE IP DEV LTD
    公开号:WO2019069269A1
    公开(公告)日:2019-04-11
    Disclosed are compounds having the formula: (I-N) wherein q, r, s, A, B, C, RA1, RA2, RB1, RB2, RC1, RC2, R3, R4, R5, R6, R14, R15, R16, and R17, are as defined herein, or a tautomer thereof, or a salt, particularly a pharmaceutically acceptable salt, thereof, along with combinations thereof, all of which are useful in HIV therapies.
    揭示了具有以下式的化合物:(I-N)其中q、r、s、A、B、C、RA1、RA2、RB1、RB2、RC1、RC2、R3、R4、R5、R6、R14、R15、R16和R17如本文所定义,或其互变异构体,或其盐,特别是其药用可接受盐,以及其组合物,所有这些在HIV疗法中是有用的。
  • [EN] PROCESSES USEFUL FOR THE SYNTHESIS OF (R)-1-{2-[4'-(3-METHOXYPROPANE-1-SULFONYL)-BIPHENYL-4-YL]-ETHYL}-2-METHYL-PYRROLIDINE<br/>[FR] PROCÉDÉS UTILES POUR LA SYNTHÈSE DE LA (R)-1-{2-[4'-(3-MÉTHOXYPROPANE-1-SULFONYL)-BIPHÉNYL-4-YL]-ÉTHYL}-2-MÉTHYL-PYRROLIDINE
    申请人:ARENA PHARM INC
    公开号:WO2009128907A1
    公开(公告)日:2009-10-22
    Processes useful for making a pharmaceutically useful compound according to Formula (I), forms of such a compound, and intermediates useful in such processes are described.
    根据公式(I)制备药用化合物的有用过程,以及该化合物的形式和在这些过程中有用的中间体被描述。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐