摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 221027-68-5

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
221027-68-5
化学式
C16H32LiO4*C36H48MnN4
mdl
——
分子量
887.111
InChiKey
NCGYUVRUSGEHQY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

反应信息

  • 作为反应物:
    描述:
    四氢呋喃 为溶剂, 以61%的产率得到2Mn(2+)*9Cu(1+)*13Cl(1-)*2(C2H5)8C20H8N4=Cu9Mn2Cl13((C2H5)8C20H8N4)2
    参考文献:
    名称:
    One- and Two-Electron Oxidative Pathways Leading to Cyclopropane-Containing Oxidized Porphyrinogens and C−C-Coupled Porphyrinogens from Alkali Cation− and Transition Metal−meso-Octaethylporphyrinogen Complexes
    摘要:
    This report deals with the different transition metal- and alkali cation-assisted oxidation pathways of the meso-octaethylporphyrinogen tetraanion [Et8N4](4-). The two-electron oxidation of [Et8N4Mn{Na(thf)(2)}(2)], 4, with Cp2FeBPh4 led to the corresponding monocyclopropane derivative [Et8N4(Delta)Mn], 6, [Delta = cyclopropane], while the one-electron oxidation with CuCl2 or O-2 led to the Mn(III)-porphyrinogen [Et8N4Mn][Li(thf)(4)], 5, which can be further oxidized by an excess of CuCl2 to [Et8N4(Delta)(2)Mn-Cl](+)[Cu9Cl11](0.5), 7. The formation of 7 does not follow the expected sequence Mn(II) --> Mn(III) --> Mn(II)-monocyclopropane --> Mn(II) - biscyclopropane-porphyrinogen. In the case of iron(II)-porphyrinogen, [Et8N4Fe{Li(thf)(2)}(2)], 9, the oxidation led in a preliminary stage to the iron(III) derivative [Et8N4Fe][Li(thf)(4)], 10, then to the metalated form of the biscyclopropane-porphyrinogen [Et8N4(Delta)(2)Fe-Cl]{mu-Cu4Cl5}], 11. The supposed stabilization of the biscyclopropane by the copper(I) cluster was ruled out by carrying the oxidation of [Cy4N4Fe{Li(thf)(2)}(2)], 11, to [Cy4N4(Delta)(2)Fe-Cl][Cu2Cl4], 14. The stepwise oxidation of [Et8N4M(thf)(4)] [M = Li, 1; M = Na, 2] with Cp2FeBPh4 led to [Et8N4(Delta)Li(2)thf(2)], 15, [Et8N4(Delta)Li]BPh4, 16, and [Et8N4(Delta)Na]BPh4, 17. The reaction of 1 with 16 leading to 15 showed how the C-C moiety in cyclopropane can be engaged in an intermolecular electron transfer. The reaction of 17 with 18-crown-6 allowed the release of biscyclopropane-porphyrinogen [Et8N4(Delta(2))] Particularly interesting is the thermal rearrangement of 15 to 19 occurring via intra- and intermolecular electron transfers with the transposition of the C-C bond of the cyclopropane to a C-C bridge across the beta position of two adjacent pyrroles. In the case of metals, such as Ni(II), which do not undergo oxidation state changes, the primary oxidation product of a metalla-meso-octaalkylporphyrinogen is the monocyclopropane derivative, which reacting with the starting material masks an overall one-electron oxidation. In fact, the reaction of [Et8N4Ni{Li(thf)(2)}(2)], 20, with 2 equiv of Cp2FeBPh4 led to the expected [Et8N4(Delta)Ni], 21, while the reaction of 20 with 1 equiv of Cp2FeBPh4 led to the dimer [(beta-beta)(Et8N4)(2)Ni-2], 22, which forms equally well from the reaction of 20 and 21. Complex 22 is a quite unique metallaporphyrinogen dimer, where the two monomeric units are joined via a C-C bond in the beta position of a pyrrole. Such a reaction shows that the methodology can accede to oligomeric forms of metallaporphyrinogens.
    DOI:
    10.1021/ja982178f
  • 作为产物:
    描述:
    氧气 以 not given 为溶剂, 生成
    参考文献:
    名称:
    One- and Two-Electron Oxidative Pathways Leading to Cyclopropane-Containing Oxidized Porphyrinogens and C−C-Coupled Porphyrinogens from Alkali Cation− and Transition Metal−meso-Octaethylporphyrinogen Complexes
    摘要:
    This report deals with the different transition metal- and alkali cation-assisted oxidation pathways of the meso-octaethylporphyrinogen tetraanion [Et8N4](4-). The two-electron oxidation of [Et8N4Mn{Na(thf)(2)}(2)], 4, with Cp2FeBPh4 led to the corresponding monocyclopropane derivative [Et8N4(Delta)Mn], 6, [Delta = cyclopropane], while the one-electron oxidation with CuCl2 or O-2 led to the Mn(III)-porphyrinogen [Et8N4Mn][Li(thf)(4)], 5, which can be further oxidized by an excess of CuCl2 to [Et8N4(Delta)(2)Mn-Cl](+)[Cu9Cl11](0.5), 7. The formation of 7 does not follow the expected sequence Mn(II) --> Mn(III) --> Mn(II)-monocyclopropane --> Mn(II) - biscyclopropane-porphyrinogen. In the case of iron(II)-porphyrinogen, [Et8N4Fe{Li(thf)(2)}(2)], 9, the oxidation led in a preliminary stage to the iron(III) derivative [Et8N4Fe][Li(thf)(4)], 10, then to the metalated form of the biscyclopropane-porphyrinogen [Et8N4(Delta)(2)Fe-Cl]{mu-Cu4Cl5}], 11. The supposed stabilization of the biscyclopropane by the copper(I) cluster was ruled out by carrying the oxidation of [Cy4N4Fe{Li(thf)(2)}(2)], 11, to [Cy4N4(Delta)(2)Fe-Cl][Cu2Cl4], 14. The stepwise oxidation of [Et8N4M(thf)(4)] [M = Li, 1; M = Na, 2] with Cp2FeBPh4 led to [Et8N4(Delta)Li(2)thf(2)], 15, [Et8N4(Delta)Li]BPh4, 16, and [Et8N4(Delta)Na]BPh4, 17. The reaction of 1 with 16 leading to 15 showed how the C-C moiety in cyclopropane can be engaged in an intermolecular electron transfer. The reaction of 17 with 18-crown-6 allowed the release of biscyclopropane-porphyrinogen [Et8N4(Delta(2))] Particularly interesting is the thermal rearrangement of 15 to 19 occurring via intra- and intermolecular electron transfers with the transposition of the C-C bond of the cyclopropane to a C-C bridge across the beta position of two adjacent pyrroles. In the case of metals, such as Ni(II), which do not undergo oxidation state changes, the primary oxidation product of a metalla-meso-octaalkylporphyrinogen is the monocyclopropane derivative, which reacting with the starting material masks an overall one-electron oxidation. In fact, the reaction of [Et8N4Ni{Li(thf)(2)}(2)], 20, with 2 equiv of Cp2FeBPh4 led to the expected [Et8N4(Delta)Ni], 21, while the reaction of 20 with 1 equiv of Cp2FeBPh4 led to the dimer [(beta-beta)(Et8N4)(2)Ni-2], 22, which forms equally well from the reaction of 20 and 21. Complex 22 is a quite unique metallaporphyrinogen dimer, where the two monomeric units are joined via a C-C bond in the beta position of a pyrrole. Such a reaction shows that the methodology can accede to oligomeric forms of metallaporphyrinogens.
    DOI:
    10.1021/ja982178f
点击查看最新优质反应信息

同类化合物

(5β,6α,8α,10α,13α)-6-羟基-15-氧代黄-9(11),16-二烯-18-油酸 (3S,3aR,8aR)-3,8a-二羟基-5-异丙基-3,8-二甲基-2,3,3a,4,5,8a-六氢-1H-天青-6-酮 (2Z)-2-(羟甲基)丁-2-烯酸乙酯 (2S,4aR,6aR,7R,9S,10aS,10bR)-甲基9-(苯甲酰氧基)-2-(呋喃-3-基)-十二烷基-6a,10b-二甲基-4,10-dioxo-1H-苯并[f]异亚甲基-7-羧酸盐 (1aR,4E,7aS,8R,10aS,10bS)-8-[((二甲基氨基)甲基]-2,3,6,7,7a,8,10a,10b-八氢-1a,5-二甲基-氧杂壬酸[9,10]环癸[1,2-b]呋喃-9(1aH)-酮 (+)顺式,反式-脱落酸-d6 龙舌兰皂苷乙酯 龙脑香醇酮 龙脑烯醛 龙脑7-O-[Β-D-呋喃芹菜糖基-(1→6)]-Β-D-吡喃葡萄糖苷 龙牙楤木皂甙VII 龙吉甙元 齿孔醇 齐墩果醛 齐墩果酸苄酯 齐墩果酸甲酯 齐墩果酸溴乙酯 齐墩果酸二甲胺基乙酯 齐墩果酸乙酯 齐墩果酸3-O-alpha-L-吡喃鼠李糖基(1-3)-beta-D-吡喃木糖基(1-3)-alpha-L-吡喃鼠李糖基(1-2)-alpha-L-阿拉伯糖吡喃糖苷 齐墩果酸 beta-D-葡萄糖酯 齐墩果酸 beta-D-吡喃葡萄糖基酯 齐墩果酸 3-乙酸酯 齐墩果酸 3-O-beta-D-葡吡喃糖基 (1→2)-alpha-L-吡喃阿拉伯糖苷 齐墩果酸 齐墩果-12-烯-3b,6b-二醇 齐墩果-12-烯-3,24-二醇 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,21,23-三醇,(3b,4b,21a)-(9CI) 齐墩果-12-烯-3,11-二酮 齐墩果-12-烯-2α,3β,28-三醇 齐墩果-12-烯-29-酸,3,22-二羟基-11-羰基-,g-内酯,(3b,20b,22b)- 齐墩果-12-烯-28-酸,3-[(6-脱氧-4-O-b-D-吡喃木糖基-a-L-吡喃鼠李糖基)氧代]-,(3b)-(9CI) 齐墩果-12-烯-28-酸,3,7-二羰基-(9CI) 齐墩果-12-烯-28-酸,3,21,29-三羟基-,g-内酯,(3b,20b,21b)-(9CI) 鼠特灵 鼠尾草酸醌 鼠尾草酸 鼠尾草酚酮 鼠尾草苦内脂 黑蚁素 黑蔓醇酯B 黑蔓醇酯A 黑蔓酮酯D 黑海常春藤皂苷A1 黑檀醇 黑果茜草萜 B 黑五味子酸 黏黴酮 黏帚霉酸