Copper-Catalyzed Site-Selective Intramolecular Amidation of Unactivated C(sp<sup>3</sup>)H Bonds
作者:Xuesong Wu、Yan Zhao、Guangwu Zhang、Haibo Ge
DOI:10.1002/anie.201311263
日期:2014.4.1
of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 CH bond functionalization process. The reaction favors predominantly the CHbonds of β‐methyl groups over the unactivated methylene CHbonds. Moreover, a preference for activating sp3 CHbonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 CHbonds was also observed in
Nickel-Catalyzed Site-Selective Amidation of Unactivated C(sp<sup>3</sup>)H Bonds
作者:Xuesong Wu、Yan Zhao、Haibo Ge
DOI:10.1002/chem.201403356
日期:2014.7.28
nickel‐catalyzed CH bond functionalization process with the assistance of a bidentatedirectinggroup. The reaction favors the CHbonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl CHbonds over the aromatic sp2 CHbonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 CH bonds
The first copper‐catalyzed intramolecular C(sp3)H and C(sp2)H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even
第一铜催化的分子内C(SP 3) H和(SPç 2) ħ氧化酰胺化得到了发展。在二氯乙烷溶剂中使用Cu(OAc)2催化剂和Ag 2 CO 3氧化剂,在末端甲基以及烷基链的内部苄基位置处进行C(sp 3)H酰胺化反应。该反应具有广泛的底物范围,即使以克为单位,也能以优异的收率获得各种β-内酰胺。在O 2下使用CuCl 2和Ag 2 CO 3但是,在二甲基亚砜中的空气会通过C(sp 2)H酰胺化选择性地生成2-吲哚酮。动力学同位素效应(KIE)的研究表明,Ç H键活化是速率决定步骤。可以通过氧化除去5-甲氧基喹啉基。
Bridging C−H Activation: Mild and Versatile Cleavage of the 8-Aminoquinoline Directing Group
作者:Martin Berger、Rajan Chauhan、Catarina A. B. Rodrigues、Nuno Maulide
DOI:10.1002/chem.201604344
日期:2016.11.14
activation within the last decade. However, cleavage of its robust amide bond has shown to be challenging in several cases, thus jeopardizing the general synthetic utility of the method. To overcome this limitation, we herein report a simple oxidative deprotection protocol. This transformation rapidly converts the robust amide to a labile imide, allowing subsequent cleavage in a simple one‐pot fashion to rapidly
Copper-Catalyzed Intramolecular Dehydrogenative Amidation of Unactivated C(sp<sup>3</sup>)–H Bonds Using O<sub>2</sub> as the Sole Oxidant
作者:Chunxia Wang、Yudong Yang、Dekun Qin、Zhen He、Jingsong You
DOI:10.1021/acs.joc.5b01302
日期:2015.8.21
In this work, an aerobic copper-catalyzedintramolecularC(sp3)–H amidation has been disclosed, which presents a rare example of copper-catalyzed functionalization of an unactivatedC(sp3)–H bond with O2 as the sole oxidant. In addition, a new protocol for the preparation of a removable 5-methoxyquinolyl moiety has been documented.