Site-Selective Catalysis: Toward a Regiodivergent Resolution of 1,2-Diols
摘要:
This paper demonstrates that the secondary hydroxyl can be functionalized in preference to the primary hydroxyl of a 1,2-diol. The site selectivity is achieved by using an enantioselective organic catalyst that is able to bond to the diol reversibly and covalently. The reaction has been parlayed into a divergent kinetic resolution on a racemic mixture, providing access to highly enantioenriched secondary-protected 1,2-diols in a single synthetic step.
Herein we report the site-selective silylation of the ribonucelosides. The method enables a simple and efficient procedure for accessing suitably protected monomers for automated RNA synthesis. Switching to the opposite enantiomer of the catalyst allows for the selective silylation of the 3'-hydroxyl, which could be used in the synthesis of unnatural RNA or for the analoging of ribonucelosides. Lastly, the procedure was extended to ribavirin a potent antiviral therapeutic.