摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-δ-D-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-D-glucopyranose | 135137-91-6

中文名称
——
中文别名
——
英文名称
2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-δ-D-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-D-glucopyranose
英文别名
2-deoxy-2-acetamido-4-O-(2-deoxy-2-acetamido-3',4',6’-tri-O-acetyl-β-D-glucopyranosyl)-3,6-di-O-acetyl-α-D-glucopyranose;GlcNAc3Ac4Ac6Ac(b1-4)a-GlcNAc3Ac6Ac;[(2R,3S,4R,5R,6S)-5-acetamido-3-[(2S,3R,4R,5S,6R)-3-acetamido-4,5-diacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-4-acetyloxy-6-hydroxyoxan-2-yl]methyl acetate
2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-δ-D-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-D-glucopyranose化学式
CAS
135137-91-6
化学式
C26H38N2O16
mdl
——
分子量
634.592
InChiKey
AGIQYCNZXDPZOD-JWVYPJMRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    803.2±65.0 °C(Predicted)
  • 密度:
    1.37±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -2.26
  • 重原子数:
    44.0
  • 可旋转键数:
    11.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.73
  • 拓扑面积:
    237.62
  • 氢给体数:
    3.0
  • 氢受体数:
    16.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Synthesis and biological evaluation of chemical tools for the study of Dolichol Linked Oligosaccharide Diphosphatase (DLODP)
    作者:Michaël Bosco、Ahmad Massarweh、Soria Iatmanen-Harbi、Ahmed Bouhss、Isabelle Chantret、Patricia Busca、Stuart E.H. Moore、Christine Gravier-Pelletier
    DOI:10.1016/j.ejmech.2016.10.013
    日期:2017.1
    Citronellyl- and solanesyl-based dolichol linked oligosaccharide (DLO) analogs were synthesized and tested along with undecaprenyl compounds for their ability to inhibit the release of [3H]OSP from [3H]DLO by mammalian liver DLO diphosphatase activity. Solanesyl (C45) and undecaprenyl (C55) compounds were 50–500 fold more potent than their citronellyl (C10)-based counterparts, indicating that the alkyl
    合成了基于香茅烷基和茄基的多羟基连接的寡糖(DLO)类似物,并与十一碳烯基化合物一起测试了它们通过哺乳动物肝脏DLO二磷酸酶活性抑制[ 3 H] OSP从[ 3 H] DLO释放的能力。茄尼基(C45)和十一碳烯基(C55)化合物的效价比其基于香茅醇(C10)的同类化合物强50-500倍,这表明烷基链长对活性至关重要。香茅基系列中化合物的相对效力不同于茄基系列,其中香茅基二磷酸的效力分别是香茅基-PP-Glc N Ac 2和香茅基-PP-Glc N Ac 2倍和3倍;而茄基-PP-GlcN Ac和茄基-PP-Glc N Ac 2的效力分别比茄基二磷酸酯高4倍和8倍。在抑制DLODP分析时,十一碳烯基-PP-Glc N Ac和细菌脂质II的效力比十一碳烯基二磷酸高8倍。因此,至少对于疏性更高的化合物而言,二磷酸二酯比二磷酸单酯是DLODP分析更有效的抑制剂。这些结果表明,DLO而不是二磷酸
  • Probing the mechanism of a fungal glycosyltransferase essential for cell wall biosynthesis. UDP-Chitobiose is not a substrate for chitin synthaseElectronic supplementary information (ESI) available: A. General experimental details; B. Synthesis of UDP-chitobiose (UDP-Chi); C. Procedure for chitin synthase assay; D. Data from UDP-Chi assays and E. Ki. determination. See http://www.rsc.org/suppdata/ob/b2/b208953j/
    作者:Robert Chang、Adam R. Yeager、Nathaniel S. Finney
    DOI:10.1039/b208953j
    日期:2003.12.19
    Chitin synthase is responsible for the biosynthesis of chitin, an essential component of the fungal cell wall. There is a long-standing question as to whether “processive” transferases such as chitin synthase operate in the same manner as non-processive transferases. The question arises from analysis of the polysaccharide structure – in chitin, for instance, each sugar residue is rotated ≈180° relative to the preceding sugar in the chain. This requires that the enzyme account for the alternating “up/down” configuration during biosynthesis. An enzyme with a single active site, analogous to the non-processive transferases – would have to accommodate a distorted glycosidic linkage at every other synthetic step. An alternative proposal is that the enzyme might assemble the disaccharide donor, addressing the “up/down” conformational problem prior to polymer synthesis. We present compelling evidence that this latter hypothesis is incorrect.
    几丁质合酶负责几丁质的生物合成,几丁质是真菌细胞壁的基本成分。长期以来有一个问题是:“机动性”转移酶(如几丁质合酶)是否以与非机动性转移酶相同的方式工作。这一问题源于多糖结构的分析——例如在几丁质中,每一糖残基相对于链中前面的糖残基旋转约180度。这就要求该酶在生物合成过程中考虑“上/下”交替的构型。与非机动性转移酶类似,具有单个活性部位的酶必须在每第二次合成步骤中适应扭曲的糖苷键。另一个提案是酶可能在聚合物合成之前组装二糖供体,解决“上/下”构象问题。我们提供了令人信服的证据,表明这后一种假设是不正确的。
  • Flitsch, Sabine L.; Pinches, Heather L.; Taylor, James P., Journal of the Chemical Society. Perkin transactions I, 1992, # 16, p. 2087 - 2094
    作者:Flitsch, Sabine L.、Pinches, Heather L.、Taylor, James P.、Turner, Nicholas J.
    DOI:——
    日期:——
查看更多