摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-Chloronitrobenzene radical anion | 34467-54-4

中文名称
——
中文别名
——
英文名称
3-Chloronitrobenzene radical anion
英文别名
3-chloronitrobenzene anion;m-chloronitrobenzene anion;m-Nitrochlorobenzol-Anion
3-Chloronitrobenzene radical anion化学式
CAS
34467-54-4;121-73-3
化学式
C6H4ClNO2
mdl
——
分子量
157.556
InChiKey
KRESEJXYPDHMQR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    43-47 °C(lit.)
  • 沸点:
    236 °C(lit.)
  • 密度:
    1.534 g/mL at 25 °C(lit.)
  • 闪点:
    218 °F
  • 溶解度:
    加热时易溶于酒精。
  • LogP:
    2.49

计算性质

  • 辛醇/水分配系数(LogP):
    1.99
  • 重原子数:
    10.0
  • 可旋转键数:
    1.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    46.2
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

安全信息

  • TSCA:
    Yes
  • 危险等级:
    6.1

SDS

SDS:fc22ee952c02c3f9066639cc0bc7f06c
查看

制备方法与用途

淡黄色晶体。相对密度1.534,熔点44℃, 沸点235.5℃。不溶于水,可溶于热乙醇、乙醚等大多数有机溶剂。还原时生成间氨基氯苯。由硝基苯在碘存在下氯化而制得。

化学性质 
浅黄色斜方棱晶。 微溶于水,溶于乙醇、乙醚、苯等大多数有机溶剂。
用途 
用于制造间氯苯胺、偶氮染料、颜料、药物、杀虫剂等
用途 
有机合成原料,染料中间体,用于制间氯苯胺,亦用于医药工业。
用途 
用于有机合成,也用作染料中间体
用途 
生化研究
用途 
间氯硝基苯是重要的染料、医药中间体,主要用于合成间氯苯胺、间二氯苯等。
用途 
本品是重要的染料、医药中间体,主要用于合成间氯苯胺、间二氯苯等。
生产方法 
1.由硝基苯在铁屑存在下氯化而得。在氯化塔中加入干燥的硝基苯和铁屑,通氯气,反应温度控制在40-45℃。当反应物料相对密度为1.35(25℃)、凝固点为23℃时,即为终点,停止通氯。用压缩空气吹除氯及氯化氢3h,将氯化物料用水洗至中性,进行减压分馏,切取凝固点22℃以上的馏分放入结晶器,冷却,降温至13℃,保持2h,然后升温,至凝固点为43℃时,将结晶器内物料熔解,得产品。2.在生产对硝基氯苯时有少量副产,可富集间位后,再精馏、结晶而得成品。
类别
有毒物品
毒性分级
高毒
急性毒性
口服-大鼠LD50:420 毫克/公斤;口服-小鼠 LD50:380 毫克/公斤
可燃性危险特性
遇明火可燃; 燃烧产生有毒氯化物和氮氧化物烟雾
储运特性
库房通风低温干燥; 与氧化剂、食品添加剂分开存放
灭火剂
二氧化碳、泡沫、砂土、雾状水
职业标准
TWA 1 毫克/立方米;STEL 2 毫克/立方米

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Photocatalytic Reduction of Nitroorganics over Illuminated Titanium Dioxide:  Electron Transfer between Excited-State TiO2 and Nitroaromatics
    摘要:
    The present study investigates the steady-state photocatalytic reduction of methyl viologen and a suite of monosubstituted nitrobenzenes. Reduction was carried out in deoxygenated, illuminated aqueous slurries of titanium dioxide (Degussa P25) in the presence of a sacrificial electron donor, 2-propanol. Langmuir-Hinshelwood plots were obtained for the reduction of each compound and found to be linear, with an average correlation of 0.98 and with a standard deviation on the correlations of 0.02. The concentration independent rates for nitroaromatic reduction obtained from these plots were normalized against the rate of methyl viologen reduction, and the ratio was used to solve for the rate constant of nitroaromatic reduction, assuming a bimolecular model. The assumptions behind this procedure were tested by the use of the Marcus expression. Using the reorganization energy for the reaction as the fitting variable, it was possible to fit the measured rates to the predicted rates with a reorganization energy of 138 kJ/mol.
    DOI:
    10.1021/jp973224l
  • 作为产物:
    描述:
    3-硝基氯苯 在 e(-) 作用下, 生成 3-Chloronitrobenzene radical anion
    参考文献:
    名称:
    气相电子转移平衡引起的熵变和电子亲和力:A- + B = A + B-
    摘要:
    DOI:
    10.1021/j100403a037
点击查看最新优质反应信息

文献信息

  • Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinones
    作者:Elaine K. Fukuda、Robert T. McIver
    DOI:10.1021/ja00294a014
    日期:1985.4
    On determine les affinites electroniques de 53 molecules en mesurant les constantes d'equilibre des reactions de transfert d'electron en phase gazeuse du type A −• +B=B −• +A. On utilise un spectrometre a resonance cyclotronique ionique pour generer, stocker et detecter les radicaux anioniques moleculaires a des pressions inferieures a 1×10 −5 torr
    在确定 les affinites electroniques de 53 分子 en mesurant les constantes d'equilibre des reactors de transfert d'electron en phasegazeuse du type A −• +B=B −• +A。使用联合国光谱仪共振回旋离子离子倾倒生成器、斯托克和检测器 les radicaux anioniques molculaires a despressions inferieures a 1×10 -5 torr
  • Resonance Electron Capture Rate Constants for Substituted Nitrobenzenes
    作者:W. B. Knighton、R. S. Mock、D. S. McGrew、E. P. Grimsrud
    DOI:10.1021/j100065a036
    日期:1994.4
    We report here a new method for the determination of electron capture (EC) rate constants that utilizes a pulsed electron beam mass spectrometer. The method is first tested by measurements of the known dissociative electron capture rate constants for several halogenated methanes that have been extensively studied by other techniques. The resonance electron capture (REC) rate constants of nitrobenzene (NB) and 23 substituted nitrobenzenes (SNB's) are then determined for the first time at 125 degrees C in 10 Torr of methane buffer gas. The SNB's studied here include several sets of closely related structural isomers whose electron affinities (EA's) have been previously determined. It is shown that the REC rate constants of these compounds bear little systematic relationship with the EA's of these compounds. The REC rate constants of the SNB's are also compared with other previously reported characteristics associated with the negative ionization of these compounds, including their entropies of negative ionization, the lifetimes against autodetachment of their initially formed molecular anions, and the rates of autodetachment from electronically excited states of their molecular anions.
  • Kinetic models for gas-phase electron-transfer reactions between nitrobenzenes
    作者:Chau Chung Han、James L. Wilbur、John I. Brauman
    DOI:10.1021/ja00029a014
    日期:1992.1
    Rate constants for gas-phase electron-transfer reactions between substituted nitrobenzenes have been measured using ion cyclotron resonance spectroscopy. On the basis of the assumption that these reactions occur through the formation of an intermediate complex, a statistical model is used to interpret the reaction kinetics. The intersecting parabolas quantum mechanical model provides an alternative description of the energy surface. Energy barriers are found to be consistent for the two methods. The results for exothermic reactions are consistent with a Marcus theory analysis, but suggest that a zero-order potential energy surface may not be completely adequate for quantitative prediction of reaction rates.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫