ABSTRACT
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of
Rhodococcus erythropolis
by chemotaxonomic and genetic studies.
R. erythropolis
DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of
R. erythropolis
DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1
S
,2
S
,4
R
)-limonene-1,2-diol, (1
S
,4
R
)-1-hydroxy-2-oxolimonene, and (3
R
)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4
R
)-limonene degradation pathway. The opposite enantiomers [(1
R
,2
R
,4
S
)-limonene-1,2-diol, (1
R
,4
S
)-1-hydroxy-2-oxolimonene, and (3
S
)-3-isopropenyl-6-oxoheptanoate] were found in the (4
S
)-limonene degradation pathway, while accumulation of (1
R
,2
S
,4
S
)-limonene-1,2-diol from (4
S
)-limonene was also observed. These results show that
R. erythropolis
DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway.
摘要
从淡
水沉积物样本中分离出了 DCL14 菌株,该菌株能够以
柠檬烯作为唯一的碳和能量来源进行生长。经鉴定,该
生物属于
Rhodococcus erythropolis
的菌株。
红球菌
DCL14 还吸收萜烯类化合物
柠檬烯-1,2-
环氧乙烷、
柠檬烯-1,2
-二醇、
香芹酚、
香芹酮和 (-)- 薄荷醇,而未将 perillyl 醇用作碳和能量来源。用
柠檬烯诱导细胞的试验表明,
柠檬烯-1,2-
环氧化物、
柠檬烯-1,2
-二醇、1-羟基-2-氧代
柠檬烯和
香芹酮的耗氧率很高。
柠檬烯诱导的
R. erythropolis
DCL14 细胞含有以下四种参与该微
生物柠檬烯降解途径的新型酶活性:依赖于黄素
腺嘌呤二核苷酸和
NADH 的
柠檬烯-1,2-单加氧酶活性、不依赖于辅助因子的
柠檬烯-1,2-
环氧化物水解酶活性、依赖于二
氯苯酚靛酚的
柠檬烯-1,2
-二醇脱氢酶活性和依赖于
NADPH 的 1- 羟基-2-氧代
柠檬烯-1,2-单加氧酶活性。产物积累研究表明,(1
S
,2
S
,4
R
)-1,2-亚甲基二醇,(1
S
,4
R
)-1-羟基-2-氧代
柠檬烯和(3
R
)-3-异
丙烯基-6-氧代
庚酸酯的中间体。
R
)-
柠檬烯降解途径的中间产物。相反的对映体[(1
R
,2
R
,4
S
)-1,2-亚甲基二醇,(1
R
,4
S
)-1-羟基-2-氧代
柠檬烯和(3
S
)-3-异
丙烯基-6-氧代
庚酸酯]中发现了(4S)
S
)-
柠檬烯降解途径中,而(1-R)
R
,2
S
,4
S
)-1,2-亚甲基
丙烯二醇从(4
S
)-亚甲烯醇中提取的。这些结果表明
R. erythropolis
DCL14 通过一种新的降解途径代谢
柠檬烯的两种对映体,该途径首先在 1,2 双键处发生环氧化反应,形成
柠檬烯-1,2-
环氧化物。这种
环氧化物随后会转化为
柠檬烯-1,2
-二醇、1-羟基-2-氧代
柠檬烯和 7-羟基-4-异
丙烯基-7-甲基-2-氧代氧杂
环庚酮。这种内酯会自发地重新排列形成 3-异
丙烯基-6-氧代
庚酸酯。在
辅酶 A 和
ATP 的存在下,这种酸会进一步转化,这一发现以及
柠檬烯生长细胞
提取物中高
水平的
异柠檬酸裂解酶活性表明,进一步降解是通过 β 氧化途径进行的。