NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing
A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids
摘要:
Long-chain fatty acids (LCFAs) are used as a rich source of metabolic energy by several bacteria including important pathogens. Because LCFAs also induce oxidative stress, which may be detrimental to bacterial growth, it is imperative to understand the strategies employed by bacteria to counteract such stresses. Here, we performed a genetic screen in Escherichia coli on the LCFA, oleate, and compared our results with published genome-wide screens of multiple non-fermentable carbon sources. This large-scale analysis revealed that among components of the aerobic electron transport chain (ETC), only genes involved in the biosynthesis of ubiquinone, an electron carrier in the ETC, are highly required for growth in LCFAs when compared with other carbon sources. Using genetic and biochemical approaches, we show that this increased requirement of ubiquinone is to mitigate elevated levels of reactive oxygen species generated by LCFA degradation. Intriguingly, we find that unlike other ETC components whose requirement for growth is inversely correlated with the energy yield of non-fermentable carbon sources, the requirement of ubiquinone correlates with oxidative stress. Our results therefore suggest that a mechanism in addition to the known electron carrier function of ubiquinone is required to explain its antioxidant role in LCFA metabolism. Importantly, among the various oxidative stress combat players in E. coli, ubiquinone acts as the cell's first line of defense against LCFA-induced oxidative stress. Taken together, our results emphasize that ubiquinone is a key antioxidant during LCFA metabolism and therefore provides a rationale for investigating its role in LCFA-utilizing pathogenic bacteria.
The quinoid nucleus of the benzoquinone, ubiquinone (coenzyme Q; Q), is derived from the shikimate pathway in bacteria and eukaryotic microorganisms. Ubiquinone is not considered a vitamin since mammals synthesize it from the essential amino acid tyrosine. Escherichia coli and other Gram-negative bacteria derive the 4-hydroxybenzoate required for the biosynthesis of Q directly from chorismate. The yeast, Saccharomyces cerevisiae, can either form 4-hydroxybenzoate from chorismate or tyrosine. However, unlike mammals, S. cerevisiae synthesizes tyrosine in vivo by the shikimate pathway. While the reactions of the pathway leading from 4-hydroxybenzoate to Q are the same in both organisms the order in which they occur differs. The 4-hydroxybenzoate undergoes a prenylation, a decarboxylation and three hydroxylations alternating with three methylation reactions, resulting in the formation of Q. The methyl groups for the methylation reactions are derived from S-adenosylmethionine. While the prenyl side chain is formed by the 2-C-methyl-d-erythritol 4-phosphate (non-mevalonate) pathway in E. coli, it is formed by the mevalonate pathway in the yeast.
Structural and Biochemical Evidence for an Enzymatic Quinone Redox Cycle in Escherichia coli
作者:Melanie A. Adams、Zongchao Jia
DOI:10.1074/jbc.m412637200
日期:2005.3
enzymatic reaction. We therefore refer to YgiN as quinol monooxygenase. Modulator of drug activity B is reported to be involved in the protection of cells from reactive oxygen species formed during single electron oxidation and reduction reactions. The enzymatic activities, together with the structural characterization of YgiN, lend evidence to the possible existence of a novel quinone redox cycle in E
Functions of the Membrane-Associated and Cytoplasmic Malate Dehydrogenases in the Citric Acid Cycle of
<i>Escherichia coli</i>
作者:Michel E. van der Rest、Christian Frank、Douwe Molenaar
DOI:10.1128/jb.182.24.6892-6899.2000
日期:2000.12.15
mqo expression. On the contrary, MQO and MDH are active at the same time in E. coli. For Corynebacterium glutamicum, it was found that MQO is the principal enzyme catalyzing the oxidation of malate to oxaloacetate. These observations justified a reinvestigation of the roles of MDH and MQO in the citric acid cycle of E. coli. In this organism, a defined deletion of the mdh gene led to severely decreased