摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

n-propyltrichlorogermane | 13892-13-2

中文名称
——
中文别名
——
英文名称
n-propyltrichlorogermane
英文别名
propyltrichlorogermane;1-(trichlorogermyl)-propane;n-Propylgermanium-trichlorid;Propyl-trichlor-germanium;1-Trichlorgermyl-propan;n-Propyltrichlorogerman;n-Propyltrichlorogermanium;trichloro(propyl)germane
n-propyltrichlorogermane化学式
CAS
13892-13-2
化学式
C3H7Cl3Ge
mdl
——
分子量
222.038
InChiKey
YRDWKEKRZCWTTM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    167 °C(Press: 763 Torr)
  • 密度:
    1.513 g/cm3

计算性质

  • 辛醇/水分配系数(LogP):
    3.05
  • 重原子数:
    7
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

SDS

SDS:0cead6f80dba1f61241580f4bb2913cc
查看

反应信息

  • 作为反应物:
    描述:
    lithium aluminium deuteride 、 n-propyltrichlorogermane二丁醚 为溶剂, 生成 propylgermane
    参考文献:
    名称:
    丙基锗烷的振动谱和密度泛函研究
    摘要:
    摘要 研究了丙锗烷 CH3CH2CH2GeH3 及其锗氘代类似物 CH3CH2CH2GeD3 的气态、液态和固态的拉曼光谱和红外光谱。通过密度泛函理论(DFT)计算进行法向坐标处理,使用B3LYP/6-31G*和6-311++G**基组,并分配相应的基本振动。trans (T) 和 gauche (G) 形式围绕中央 C-C 键以气态和液态共存,只有 T 形式存在于固态。根据液态拉曼光谱的温度相关测量,发现焓差为 ΔH(T-G)=-0.36±0.02 kcal mol -1,T 形式更稳定。通过 DFT 计算获得的异构体之间的能量差异为 Δ E(T-G)=-0.46 kcal mol -1 和 Δ E(T-G)=-0。
    DOI:
    10.1016/s0022-2860(02)00022-4
  • 作为产物:
    描述:
    锗烷1-氯丙烷 以 neat (no solvent) 为溶剂, 以0%的产率得到n-propyltrichlorogermane
    参考文献:
    名称:
    Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate
    摘要:
    有机三氯锗烷是通过元素锗、四氯化锗和有机氯化物(甲基、丙基、异丙基和烯丙基氯化物)反应合成的。元素锗与四氯化锗反应生成的二氯锗烯是反应中间体,该中间体插入有机氯化物的碳-氯键中,生成有机三氯锗烷。当使用异丙基或烯丙基氯化物作为有机氯化物时,即使在没有四氯化锗的情况下,也能形成有机三氯锗烷。这些氯化物会转化为氯化氢,后者与元素锗反应生成二氯锗烯中间体。元素锗、四氯化锗和有机氯化物的反应为合成有机三氯锗烷提供了一种简单易行的方法,并且所有原材料都易于获取。
    DOI:
    10.1039/b404590d
点击查看最新优质反应信息

文献信息

  • Chernyshev, E. A.; Shcherbinin, V. V.; Krivolapova, O. V., Russian Journal of General Chemistry, 1999, vol. 69, # 11, p. 1721 - 1723
    作者:Chernyshev, E. A.、Shcherbinin, V. V.、Krivolapova, O. V.、Bykovchenko, V. G.、Komalenkova, N. G.、Bochkarev, V. N.
    DOI:——
    日期:——
  • Density functional study of n-propyltrichlorogermane and n-propyltrichlorostannane
    作者:Keijiro Taga、Yasuomi Jibu、Shigetaka Hamada、Yasushi Yamamoto、Tadayoshi Yoshida、Norihiro Shida、Hiroshi Yoshida、Keiichi Ohno、Hiroatsu Matsuura
    DOI:10.1016/j.molstruc.2004.01.042
    日期:2004.6
    The IR and Raman spectra of n-propyltrichlorogermane (PTCG), CH3CH2CH2GeCl3, and n-propyltrichlorostannane (PTCS), CH3CH2CH2SnCl3, were measured in the liquid and solid states. The fundamental vibrations were assigned with the aid of a density functional theory (DFT) method using GAUSSIAN 98. For the calculation of the DFT method, the B3LYP/6-31G* and the 6-311 + G** levels were used for C, H, Cl and Ge atoms and the B3LYP/CEP-31G level for Sn atom. The trans (T) and gauche (G) forms around the central C-C bond coexisted in the liquid state for both the molecules. While, the T form existed in the solid state for PTCG and the G form existed for PTCS. From the temperature dependent measurements of the Raman spectra in the liquid state, the enthalpy differences were found to be DeltaH(G - T) = 0.26 +/- 0.03 kcal mol(-1) with the T form being more stable for PTCG and to be DeltaH(G - T) = -0.03 +/- 0.01 kcal mol(-1) with the G form being slightly stable for PTCS, respectively. However, the energy differences between the forms calculated by the DFT method showed that the T form was more stable than the G form for both the molecules. (C) 2004 Elsevier B.V. All rights reserved.
  • Chernyshev; Komalenkova; Yakovleva, Russian Journal of General Chemistry, 1998, vol. 68, # 3, p. 403 - 406
    作者:Chernyshev、Komalenkova、Yakovleva、Bykovchenko、Khromykh、Bochkarev
    DOI:——
    日期:——
  • ZUEVA G. YA.; XAUSTOVA T. I.; SEREZHKINA N. V., 4 BCEC. KONF. PO XIMII KARBENOV, MOSKVA, 15-17 CEHT., 1987. TEZ. DOKL., M+
    作者:ZUEVA G. YA.、 XAUSTOVA T. I.、 SEREZHKINA N. V.
    DOI:——
    日期:——
  • Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate
    作者:Masaki Okamoto、Takuya Asano、Eiichi Suzuki
    DOI:10.1039/b404590d
    日期:——
    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon–chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.
    有机三氯锗烷是通过元素锗、四氯化锗和有机氯化物(甲基、丙基、异丙基和烯丙基氯化物)反应合成的。元素锗与四氯化锗反应生成的二氯锗烯是反应中间体,该中间体插入有机氯化物的碳-氯键中,生成有机三氯锗烷。当使用异丙基或烯丙基氯化物作为有机氯化物时,即使在没有四氯化锗的情况下,也能形成有机三氯锗烷。这些氯化物会转化为氯化氢,后者与元素锗反应生成二氯锗烯中间体。元素锗、四氯化锗和有机氯化物的反应为合成有机三氯锗烷提供了一种简单易行的方法,并且所有原材料都易于获取。
查看更多