Background: In bacteria with truncated lipopolysaccharide structures, i.e., lacking the O-antigen polysaccharide part, core structures are exposed to the immune system upon infection and thus their use as carbohydrate surface antigens in glycoconjugate vaccines can be considered and investigated. One such suggested structure from Haemophilus influenzae LPS is the phosphorylated pentasaccharide 6-PEtN-α-D-GalpNAc-(1→6)-β-D-Galp-(1→4)-β-D-GlcpNAc-(1→3)-β-D-Galp-(1→4)-β-D-Glcp.
Results: Starting from a spacer-containing lactose derivative a suitably protected lacto-N-neotetraose tetrasaccharide structure was constructed through subsequential couplings with two thioglycoside donors, a glucosamine residue followed by a galactose derivative, using NIS/AgOTf as promoter. Removal of a silyl protecting group at the primary position of the non-reducing end residue afforded an acceptor to which the terminal α-galactosamine moiety was introduced using a 2-azido bromo sugar and halide assisted coupling conditions. Global deprotection afforded the non-phosphorylated target pentasaccharide, whereas removal of a silyl group from the primary position of the non-reducing end residue produced a free hydroxy group which was phosphorylated using H-phosphonate chemistry to yield the phosphoethanolamine-containing protected pentasaccharide. Partial deprotection afforded the phosphorylated target pentasaccharide with a free spacer amino group but with a protected phosphoethanolamino group. Conjugation of the spacer amino group to biotin or dimethyl squarate followed by deprotection of the phosphoethanolamino group and, in the case of the squarate derivative, further reaction with a protein then afforded the title conjugates.
Conclusion: An effective synthesis of a biologically interesting pentasaccharide structure has been accomplished. The target pentasaccharide, an α-GalNAc substituted lacto-N-neotetraose structure, comprises a phosphoethanolamine motif and a spacer aglycon. Through the spacer, biotin and protein conjugates of the title compound have been constructed to allow further use in biological experiments.
背景:在缺少O抗原多糖部分的细菌中,核心结构暴露在感染时免疫系统中,因此可以考虑和研究它们作为糖基共轭疫苗中的碳水化合物表面抗原。一种来自流感嗜血杆菌LPS的建议结构是磷酸化的五糖基6-PEtN-α-D-GalpNAc-(1→6)-β-D-Galp-(1→4)-β-D-GlcpNAc-(1→3)-β-D-Galp-(1→4)-β-D-Glcp。
结果:从含间隔的乳糖衍生物开始,通过使用NIS/AgOTf作为促进剂,使用两个硫代糖苷供体(葡萄糖胺残基和半乳糖衍生物)进行连续耦合,构建了一个合适的保护的乳糖-N-新四糖四糖结构。去除非还原末端残基的硅保护基,得到一个受体,通过使用2-叠氮基溴糖和卤化物辅助耦合条件,引入了末端α-半乳糖胺基团。全局去保护后得到非磷酸化的目标五糖基,而从非还原末端残基中去除硅基团产生了一个自由的羟基,使用H-膦酸酯化学将其磷酸化,得到含磷酸乙醇胺的保护五糖基。部分去保护后得到含自由间隔氨基团但保护的磷酸乙醇胺基团的磷酸化目标五糖基。将间隔氨基团与生物素或二甲基方酸结合,去除磷酸乙醇胺基团并在二甲基方酸衍生物的情况下进一步与蛋白质反应,得到了标题共轭物。
结论:已成功合成了一种具有生物学意义的五糖基结构。目标五糖基是一种α-GalNAc取代的乳糖-N-新四糖结构,包括一个磷酸乙醇胺基团和一个间隔糖基。通过间隔糖基,构建了标题化合物的生物素和蛋白质共轭物,以便在生物实验中进一步使用。