[EN] DITERPENOID COMPOUNDS THAT ACT ON PROTEIN KINASE C (PKC)<br/>[FR] COMPOSÉS DITERPÉNOÏDES AGISSANT SUR LA PROTÉINE KINASE C (PKC)
申请人:K GEN INC
公开号:WO2021062030A1
公开(公告)日:2021-04-01
This present disclosure relates to protein kinase C (PKC) modulating compounds, methods of treating a subject with cancer using the compounds, and combination treatments with a second therapeutic agent.
Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor
作者:Shelby C. Yuhas、Daniel J. Laverty、Huijin Lee、Ananya Majumdar、Marc M. Greenberg
DOI:10.1021/jacs.1c02453
日期:2021.6.2
has been closely linked to cancer. Selectiveinhibitors of this enzyme are lacking. Inspired by DNA lesions produced by antitumor agents that inactivate Pol β, we have undertaken the development of covalent small-molecule inhibitors of this enzyme. Using a two-stage process involving chemically synthesized libraries, we identified a potent irreversible inhibitor (14) of Pol β (KI = 1.8 ± 0.45 μM, kinact
DNA 聚合酶 β (Pol β) 在 DNA 修复中起着至关重要的作用,并且与癌症密切相关。缺乏这种酶的选择性抑制剂。受使 Pol β 失活的抗肿瘤剂产生的 DNA 损伤的启发,我们着手开发这种酶的共价小分子抑制剂。使用涉及化学合成文库的两阶段过程,我们确定了Pol β的有效不可逆抑制剂 ( 14 ) ( K I = 1.8 ± 0.45 μM, k inact = (7.0 ± 1.0) × 10 –3 s –1 )。抑制剂14比其他 DNA 聚合酶选择性地灭活 Pol β。用14处理的 Pol β 胰蛋白酶消化物的 LC-MS/MS 分析鉴定了聚合酶结合位点内共价修饰的两个赖氨酸,其中一个先前被确定在DNA结合中起作用。荧光各向异性实验表明,用14预处理 Pol β可防止 DNA 结合。在野生型小鼠胚胎成纤维细胞 (MEF) 中使用前抑制剂 ( pro - 14 ) 的实验表明,抑制剂
Antibacterial Barbituric Acid Analogues Inspired from Natural 3-Acyltetramic Acids; Synthesis, Tautomerism and Structure and Physicochemical Property-Antibacterial Activity Relationships
作者:Yong-Chul Jeong、Mark Moloney
DOI:10.3390/molecules20033582
日期:——
The synthesis, tautomerism and antibacterial activity of novel barbiturates is reported. In particular, 3-acyl and 3-carboxamidobarbiturates exhibited antibacterial activity, against susceptible and some resistant Gram-positive strains of particular interest is that these systems possess amenable molecular weight, rotatable bonds and number of proton-donors/acceptors for drug design as well as less
Naturalproducts (NPs) are progressively recognized as invaluable source of pharmacological tools and lead structures. To enable NP-inspired retinoid X receptor (RXR) modulator design, three novel RXR-targeting NPs were computationally identified. Among them, valerenic acid was found to be selective for RXRβ, rendering it a unique pharmacological tool compound. The NPs then served as templates for
The concept of virtual screening and automated de novo design has been corroborated as a viable strategy for scaffold hopping from bioactive natural products to isofunctional, synthetically accessible mimetics.