Synthesis, Characterization, and Nanoencapsulation of Tetrathiatriarylmethyl and Tetrachlorotriarylmethyl (Trityl) Radical Derivatives—A Study To Advance Their Applicability as in Vivo EPR Oxygen Sensors
摘要:
Tissue oxygenation plays an important role in the pathophysiology of various diseases and is often a marker of prognosis and therapeutic response. EPR (ESR) is a suitable noninvasive oximetry technique. However, to reliably deploy soluble EPR probes as oxygen sensors in complex biological systems, there is still a need to investigate and improve their specificity, sensitivity, and stability. We reproducibly synthesized various derivatives of tetrathiatriarylmethyl and tetrachlorotriarylmethyl (trityl) radicals. Hydrophilic radicals were investigated in aqueous solution mimicking physiological conditions by, e.g., variation of viscosity and ionic strength. Their specificity was satisfactory, but the oxygen sensitivity was low. To enhance the capability of trityl radicals as oxygen sensors, encapsulation into oily core nanocapsules was performed. Thus, different lipophilic triesters were prepared and characterized in oily solution employing oils typically used in drug formulations, i.e., middle-chain triglycerides and isopropyl myristate. Our screening identified the deuterated ethyl ester of D-TAM (radical 13) to be suitable. It had an extremely narrow single EPR line under anoxic conditions and excellent oxygen sensitivity. After encapsulation, it retained its oxygen responsiveness and was protected against reduction by ascorbic acid. These biocompatible and highly sensitive nanosensors offer great potential for future EPR oximetry applications in preclinical research.
Large-scale synthesis of a monophosphonated tetrathiatriarylmethyl spin probe for concurrent <i>in vivo</i> measurement of <i>p</i>O<sub>2</sub>, pH and inorganic phosphate by EPR
作者:Teresa D. Gluth、Martin Poncelet、Stephen DeVience、Marieta Gencheva、Emily. H. Hoblitzell、Valery V. Khramtsov、Timothy D. Eubank、Benoit Driesschaert
DOI:10.1039/d1ra04551b
日期:——
We report a new strategy for the synthesis of a mono-phosphonated triarylmethyl radical spin probe and a standalone application with a user-friendly interface for automatic spectrum fitting and extraction of pO2, pH, and [Pi] values.
Room-Temperature Electron Spin Relaxation of Triarylmethyl Radicals at the X- and Q-Bands
作者:Andrey A. Kuzhelev、Dmitry V. Trukhin、Olesya A. Krumkacheva、Rodion K. Strizhakov、Olga Yu. Rogozhnikova、Tatiana I. Troitskaya、Matvey V. Fedin、Victor M. Tormyshev、Elena G. Bagryanskaya
DOI:10.1021/acs.jpcb.5b03027
日期:2015.10.29
Triarylmethyl radicals (trityls, TAMs) represent a relatively new class of spin labels. The long relaxation of trityls at room temperature in liquid solutions makes them a promising alternative for traditional nitroxides. In this work we have synthesized a series of TAMs including perdeuterated Finland trityl (D-36 form), mono-, di-, and triester derivatives of Finland-D-36 trityl, the deuterated form of OX63, the dodeca-n-butyl homologue of Finland trityl, and triamide derivatives of Finland trityl with primary and secondary amines attached. We have studied room-temperature relaxation properties of these TAMs in liquids using pulsed electron paramagnetic resonance (EPR) at two microwave frequency bands. We have found the clear dependence of phase memory time (T-m similar to T-2) on the magnetic field: room-temperature T-m values are similar to 1.5-2.5 times smaller at the Q-band (34 GHz, 1.2 T) than at the X-band (9 GHz, 0.3 T). This trend is ascribed to the contribution from g-anisotropy that is negligible at lower magnetic fields but comes into play at the Q-band. In agreement with this, the difference between T-1 and T-m becomes more pronounced at the Q-band than at the X-band due to increased contributions from incomplete motional averaging of g-anisotropy. Linear dependence of (1/T-m - 1/T-1) on viscosity implies that g-anisotropy is modulated by rotational motion of the trityl radical. On the basis of the analysis of previous data and results of the present work, we conclude that, in the general situation where the spin label is at least partly mobile, the X-band is most suitable for application of trityls for room-temperature pulsed EPR distance measurements.
Esterified Dendritic TAM Radicals with Very High Stability and Enhanced Oxygen Sensitivity
作者:Yuguang Song、Yangping Liu、Craig Hemann、Frederick A. Villamena、Jay L. Zweier
DOI:10.1021/jo301849k
日期:2013.2.15
In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O-2 sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.
Synthesis, Characterization, and Nanoencapsulation of Tetrathiatriarylmethyl and Tetrachlorotriarylmethyl (Trityl) Radical Derivatives—A Study To Advance Their Applicability as in Vivo EPR Oxygen Sensors
作者:Juliane Frank、Marwa Elewa、Mohamed M. Said、Hosam A. El Shihawy、Mohamed El-Sadek、Diana Müller、Annette Meister、Gerd Hause、Simon Drescher、Hendrik Metz、Peter Imming、Karsten Mäder
DOI:10.1021/acs.joc.5b00918
日期:2015.7.2
Tissue oxygenation plays an important role in the pathophysiology of various diseases and is often a marker of prognosis and therapeutic response. EPR (ESR) is a suitable noninvasive oximetry technique. However, to reliably deploy soluble EPR probes as oxygen sensors in complex biological systems, there is still a need to investigate and improve their specificity, sensitivity, and stability. We reproducibly synthesized various derivatives of tetrathiatriarylmethyl and tetrachlorotriarylmethyl (trityl) radicals. Hydrophilic radicals were investigated in aqueous solution mimicking physiological conditions by, e.g., variation of viscosity and ionic strength. Their specificity was satisfactory, but the oxygen sensitivity was low. To enhance the capability of trityl radicals as oxygen sensors, encapsulation into oily core nanocapsules was performed. Thus, different lipophilic triesters were prepared and characterized in oily solution employing oils typically used in drug formulations, i.e., middle-chain triglycerides and isopropyl myristate. Our screening identified the deuterated ethyl ester of D-TAM (radical 13) to be suitable. It had an extremely narrow single EPR line under anoxic conditions and excellent oxygen sensitivity. After encapsulation, it retained its oxygen responsiveness and was protected against reduction by ascorbic acid. These biocompatible and highly sensitive nanosensors offer great potential for future EPR oximetry applications in preclinical research.
Synthesis, structure, and EPR characterization of deuterated derivatives of Finland trityl radical
作者:Ilirian Dhimitruka、Olga Grigorieva、Jay L. Zweier、Valery V. Khramtsov
DOI:10.1016/j.bmcl.2010.05.006
日期:2010.7
Substituted trityl radicals are important spin probes for functional electron paramagnetic resonance spectroscopy and imaging including oxygen and pH mapping in vivo. Here we report the synthetic procedure for large scale synthesis of deuterated Finland trityl radical with superior EPR spectral properties and higher sensitivity towards oxygen concentrations in solution. Additionally Finland trityl radicals