A palladium-catalyzed multicomponent reaction of alkynes, carboxylic acids, and isocyanides has been developed with the assistance of silver salt under mild conditions. Highly functionalized captodative olefins are synthesized efficiently by this method, which can find many applications as versatile synthons in organic synthesis.
Contrarily to the same UV-mediated reaction, where photons can give rise to side processes, in this case, almost all absorbed photons are selective and effective, and the quantum yield is close to 100%. If the rearrangement is carried out in the presence of isocyanides and carboxylic acids/silanols, the photoreactivity is not affected, and the resulting ketenes can afford α-acyloxy- and α-silyloxyacrylamides
synthons in organic synthesis. This involves a photoactivated multicomponent reaction, performed both in batch and under continuous flow conditions. This process affords the desired compounds in a stereoselective fashion from readily available starting materials in one step, without the aid of metal catalysis. This paper illustrates the preliminary work, the extensive experiments carried out to understand