The present invention relates to a process for converting lutein and/or lutein esters to (3R)-β-cryptoxanthin and (3R,6′R)-α-cryptoxanthin, suitable for human consumption as dietary supplements, by employing safe and environmentally friendly reagents. (3R)-β-Cryptoxanthin and (3R,6′R)-α-cryptoxanthin are two rare food carotenoids that are not commercially available and the former exhibits vitamin A activity. In the first synthetic step, commercially available lutein and/or lutein esters are transformed into a mixture of dehydration products of lutein (anhydroluteins) in the presence of a catalytic amount of an acid. The resulting anhydroluteins are then converted to (3R)-β-cryptoxanthin (major product) and (3R,6′R)-α-cryptoxanthin (minor product) by heterogeneous catalytic hydrogenation employing transition elements of group VIII (Pt, Pd, Rh supported on alumina or carbon) in a variety of organic solvents under atmospheric pressure of hydrogen and at temperatures ranging from −15° C. to 40° C. Among these catalysts, Pt supported on alumina at 40° C. in ethyl acetate provides the best yield of (3R)-β-cryptoxanthin and (3R,6′R)-α-cryptoxanthin. Several homogeneous catalysts can also promote the regioselective hydrogenation of anhydroluteins to a mixture of (3R)-β-cryptoxanthin and (3R,6′R)-α-cryptoxanthin in low to moderate yields. The catalysts may be transition metal complexes such as palladium acetylacetonate, Rh(Ph
3
P)
3
Cl (Wilkinson's catalyst), [(C
6
H
11
)
3
P[C
8
H
12
][C
5
H
5
N] Ir
+
PF6
−
(Crabtree catalyst), or [C
8
H
12
][(MePh
2
P)
2
]Ir
+
PF6
−
. Among these, Wilkinson catalyst converts anhydroluteins to (3R)-β-cryptoxanthin and (3R,6′R)-α-cryptoxanthin in nearly quantitative yield. A novel feature of this invention is the regioselective hydrogenation of anhydroluteins while the highly conjugated polyene chain of these carotenoids remains intact.
本发明涉及一种将
叶黄素和/或
叶黄素酯转化为(3R)-β-隐花黄素和(3R,6′R)-α-隐花黄素的过程,适合作为人类膳食补充剂,采用安全且环保的试剂。 (3R)-β-隐花黄素和(3R,6′R)-α-隐花黄素是两种罕见的食品类
胡萝卜素,目前商业上不可获得,前者具有
维生素A活性。在第一合成步骤中,商业上可获得的
叶黄素和/或
叶黄素酯在酸的催化下转化为
叶黄素的脱
水产物混合物(脱
水叶黄素)。然后,通过使用过渡元素(Pt、Pd、Rh负载在氧化铝或碳上)在各种有机溶剂中,利用异质催化加氢将得到的脱
水叶黄素转化为(3R)-β-隐花黄素(主要产物)和(3R,6′R)-α-隐花黄素(次要产物),在
氢气大气压下,温度范围从-15°C到40°C。在这些催化剂中,40°C时在
乙酸乙酯中负载Pt提供了(3R)-β-隐花黄素和(3R,6′R)-α-隐花黄素的最佳产率。几种均相催化剂也可以促进
叶黄素的区域选择性加氢,将其转化为(3R)-β-隐花黄素和(3R,6′R)-α-隐花黄素的混合物,产率较低至适中。这些催化剂可以是过渡
金属配合物,如
醋酸钯、Rh(Ph3P)3Cl(威尔
金森催化剂)、[(
C6H11)3P[C8H12][C5H5N] Ir+PF6−(克拉布特里催化剂)或[C8H12][(MePh2P)2]Ir+PF6−。在这些催化剂中,威尔
金森催化剂将脱
水叶黄素转化为(3R)-β-隐花黄素和(3R,6′R)-α-隐花黄素,产率接近定量。本发明的一个新特点是在
叶黄素的高度共轭多烯链保持完整的情况下对脱
水叶黄素进行区域选择性加氢。