摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-(4-tert-Butoxycarbonylamino-phenoxy)-thieno[2,3-c]pyridine-2-carboxylic acid | 1026003-46-2

中文名称
——
中文别名
——
英文名称
4-(4-tert-Butoxycarbonylamino-phenoxy)-thieno[2,3-c]pyridine-2-carboxylic acid
英文别名
4-[4-[(2-Methylpropan-2-yl)oxycarbonylamino]phenoxy]thieno[2,3-c]pyridine-2-carboxylic acid
4-(4-tert-Butoxycarbonylamino-phenoxy)-thieno[2,3-c]pyridine-2-carboxylic acid化学式
CAS
1026003-46-2
化学式
C19H18N2O5S
mdl
——
分子量
386.428
InChiKey
KVCAIFMFMOJGQT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    27
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.21
  • 拓扑面积:
    126
  • 氢给体数:
    2
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Selective Inhibition of ICAM-1 and E-Selectin Expression in Human Endothelial Cells. 2. Aryl Modifications of 4-(Aryloxy)thieno[2,3-c]pyridines with Fine-Tuning at C-2 Carbamides
    摘要:
    The elevated expression of cell adhesion molecules (CAMs) on the lumenal surface of vascular endothelial cells is a critical early event in the complex inflammatory process. The adhesive interactions of these CAMs that include E-selectin, ICAM-1, and VCAM-1 with their counterreceptors on leukocytes, such as integrins of the alpha (L)beta (2) family, result in migration of the leukocytes to the site of inflammation and cause tissue injury. Pharmaceutical agents that could suppress the induced expression of one or more of these cell adhesion molecules would provide a novel mechanism to attenuate the inflammatory responses associated with chronic inflammatory diseases. A-205804 (1), a potent and selective inhibitor of the induced expression of E-selectin and ICAM-1 over VCAM-1, was further modified with emphasis at the C-4 and C-2 positions to identify a more potent drug candidate with a good pharmacokinetic profile and physical properties. Replacement of the C-4 sulfur linkage in I with an oxygen atom eliminated one of the two major metabolites for this lead molecule. The para-position of the 4-phenoxy group of the thieno[2,3-c]pyridine lead is found to be very critical for a higher in vitro potency and selectivity of E-selectin and ICAM-1 over VCAM-1 expression. This position is presumably close to the solvent-accessible region of the target protein-inhibitor complex. An attempt to install a water-solubilizing group at the para-position of the phenoxy group to increase the aqueous solubility of this lead series through various linkages failed to provide an ideal inhibitor. Only small substituents such as fluorine are tolerated at the meta- and ortho-positions of the 4-phenoxy to retain a good in vitro potency. Bromo, trifluoromethyl, pyrazol-1-yl, and imidazol-1-yl are among the better substituents at the para-position. With fine-tuning at the C-2 position we discovered a series of very potent (IC50 < 5 nM for ICAM-1) and selective (> 200-fold vs VCAM-1) inhibitors with a good pharmacokinetic profile. Demonstrated efficacy in a rat rheumatoid arthritis model and in a mice asthma model with selected compounds is also reported.
    DOI:
    10.1021/jm0101702
  • 作为产物:
    描述:
    参考文献:
    名称:
    Selective Inhibition of ICAM-1 and E-Selectin Expression in Human Endothelial Cells. 2. Aryl Modifications of 4-(Aryloxy)thieno[2,3-c]pyridines with Fine-Tuning at C-2 Carbamides
    摘要:
    The elevated expression of cell adhesion molecules (CAMs) on the lumenal surface of vascular endothelial cells is a critical early event in the complex inflammatory process. The adhesive interactions of these CAMs that include E-selectin, ICAM-1, and VCAM-1 with their counterreceptors on leukocytes, such as integrins of the alpha (L)beta (2) family, result in migration of the leukocytes to the site of inflammation and cause tissue injury. Pharmaceutical agents that could suppress the induced expression of one or more of these cell adhesion molecules would provide a novel mechanism to attenuate the inflammatory responses associated with chronic inflammatory diseases. A-205804 (1), a potent and selective inhibitor of the induced expression of E-selectin and ICAM-1 over VCAM-1, was further modified with emphasis at the C-4 and C-2 positions to identify a more potent drug candidate with a good pharmacokinetic profile and physical properties. Replacement of the C-4 sulfur linkage in I with an oxygen atom eliminated one of the two major metabolites for this lead molecule. The para-position of the 4-phenoxy group of the thieno[2,3-c]pyridine lead is found to be very critical for a higher in vitro potency and selectivity of E-selectin and ICAM-1 over VCAM-1 expression. This position is presumably close to the solvent-accessible region of the target protein-inhibitor complex. An attempt to install a water-solubilizing group at the para-position of the phenoxy group to increase the aqueous solubility of this lead series through various linkages failed to provide an ideal inhibitor. Only small substituents such as fluorine are tolerated at the meta- and ortho-positions of the 4-phenoxy to retain a good in vitro potency. Bromo, trifluoromethyl, pyrazol-1-yl, and imidazol-1-yl are among the better substituents at the para-position. With fine-tuning at the C-2 position we discovered a series of very potent (IC50 < 5 nM for ICAM-1) and selective (> 200-fold vs VCAM-1) inhibitors with a good pharmacokinetic profile. Demonstrated efficacy in a rat rheumatoid arthritis model and in a mice asthma model with selected compounds is also reported.
    DOI:
    10.1021/jm0101702
点击查看最新优质反应信息

文献信息

  • Selective Inhibition of ICAM-1 and E-Selectin Expression in Human Endothelial Cells. 2. Aryl Modifications of 4-(Aryloxy)thieno[2,3-<i>c</i>]pyridines with Fine-Tuning at C-2 Carbamides
    作者:Gui-Dong Zhu、David L. Arendsen、Indrani W. Gunawardana、Steven A. Boyd、Andrew O. Stewart、Dennis G. Fry、Barbara L. Cool、Lemma Kifle、Verlyn Schaefer、Joseph Meuth、Kennan C. Marsh、Anita J. Kempf-Grote、Patrick Kilgannon、W. Michael Gallatin、Gregory F. Okasinski
    DOI:10.1021/jm0101702
    日期:2001.10.1
    The elevated expression of cell adhesion molecules (CAMs) on the lumenal surface of vascular endothelial cells is a critical early event in the complex inflammatory process. The adhesive interactions of these CAMs that include E-selectin, ICAM-1, and VCAM-1 with their counterreceptors on leukocytes, such as integrins of the alpha (L)beta (2) family, result in migration of the leukocytes to the site of inflammation and cause tissue injury. Pharmaceutical agents that could suppress the induced expression of one or more of these cell adhesion molecules would provide a novel mechanism to attenuate the inflammatory responses associated with chronic inflammatory diseases. A-205804 (1), a potent and selective inhibitor of the induced expression of E-selectin and ICAM-1 over VCAM-1, was further modified with emphasis at the C-4 and C-2 positions to identify a more potent drug candidate with a good pharmacokinetic profile and physical properties. Replacement of the C-4 sulfur linkage in I with an oxygen atom eliminated one of the two major metabolites for this lead molecule. The para-position of the 4-phenoxy group of the thieno[2,3-c]pyridine lead is found to be very critical for a higher in vitro potency and selectivity of E-selectin and ICAM-1 over VCAM-1 expression. This position is presumably close to the solvent-accessible region of the target protein-inhibitor complex. An attempt to install a water-solubilizing group at the para-position of the phenoxy group to increase the aqueous solubility of this lead series through various linkages failed to provide an ideal inhibitor. Only small substituents such as fluorine are tolerated at the meta- and ortho-positions of the 4-phenoxy to retain a good in vitro potency. Bromo, trifluoromethyl, pyrazol-1-yl, and imidazol-1-yl are among the better substituents at the para-position. With fine-tuning at the C-2 position we discovered a series of very potent (IC50 < 5 nM for ICAM-1) and selective (> 200-fold vs VCAM-1) inhibitors with a good pharmacokinetic profile. Demonstrated efficacy in a rat rheumatoid arthritis model and in a mice asthma model with selected compounds is also reported.
查看更多