Anti-HIV diarylpyrimidine–quinolone hybrids and their mode of action
摘要:
A molecular hybridization approach is a powerful tool in the design of new molecules with improved affinity and efficacy. In this context, a series of diarylpyrimidine-quinolone hybrids were synthesized and evaluated against both wt HIV-1 and mutant viral strains. The most active hybrid 5a displayed an EC50 value of 0.28 +/- 0.07 mu M against HIV-1 IIIB. A couple of enzyme-based assays clearly pinpoint a RT-targeted mechanism of action. Docking studies revealed that these hybrids could be well located in the NNIBP of HIV-1 RT despite the bulky and polar properties of a quinolone 3-carboxylic acid moiety in the molecules. (C) 2015 Elsevier Ltd. All rights reserved.
A molecular hybridization approach is a powerful tool in the design of new molecules with improved affinity and efficacy. In this context, a series of diarylpyrimidine-quinolone hybrids were synthesized and evaluated against both wt HIV-1 and mutant viral strains. The most active hybrid 5a displayed an EC50 value of 0.28 +/- 0.07 mu M against HIV-1 IIIB. A couple of enzyme-based assays clearly pinpoint a RT-targeted mechanism of action. Docking studies revealed that these hybrids could be well located in the NNIBP of HIV-1 RT despite the bulky and polar properties of a quinolone 3-carboxylic acid moiety in the molecules. (C) 2015 Elsevier Ltd. All rights reserved.