A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether: Synthesis and structure–activity relationships (2)
摘要:
A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and its analogues were prepared, and their antibacterial activities and pharmacokinetic properties were evaluated. We found that the introduction of all (R)-alkyl group between the amide and iminoether groups could improve the pharmacokinetic properties while maintaining the activity against erythromycin-resistant Streptococcus pneumoniae. Among the ketolides prepared with the (R)-alkyl group, compound 5p with an N-(3-quinoxalin-6-yl-propyl)-propionamide moiety was found to have in vivo efficacy comparable to CAM with potent in vitro antibacterial activities against the key respiratory pathogens including Haemophilus influenzae and erythromycin-resistant S. pneumoniae. (c) 2006 Elsevier Ltd. All rights reserved.
A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether: Synthesis and structure–activity relationships (2)
摘要:
A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and its analogues were prepared, and their antibacterial activities and pharmacokinetic properties were evaluated. We found that the introduction of all (R)-alkyl group between the amide and iminoether groups could improve the pharmacokinetic properties while maintaining the activity against erythromycin-resistant Streptococcus pneumoniae. Among the ketolides prepared with the (R)-alkyl group, compound 5p with an N-(3-quinoxalin-6-yl-propyl)-propionamide moiety was found to have in vivo efficacy comparable to CAM with potent in vitro antibacterial activities against the key respiratory pathogens including Haemophilus influenzae and erythromycin-resistant S. pneumoniae. (c) 2006 Elsevier Ltd. All rights reserved.
A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether and its analogues were prepared, and their antibacterial activities and pharmacokinetic properties were evaluated. We found that the introduction of all (R)-alkyl group between the amide and iminoether groups could improve the pharmacokinetic properties while maintaining the activity against erythromycin-resistant Streptococcus pneumoniae. Among the ketolides prepared with the (R)-alkyl group, compound 5p with an N-(3-quinoxalin-6-yl-propyl)-propionamide moiety was found to have in vivo efficacy comparable to CAM with potent in vitro antibacterial activities against the key respiratory pathogens including Haemophilus influenzae and erythromycin-resistant S. pneumoniae. (c) 2006 Elsevier Ltd. All rights reserved.