superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn‐on properties. The best compound identified in this study showed excellent performance in live cell‐labeling experiments and enabled no‐washfluorogenicimaging on a timescale of seconds
A novel organometallic complex having high heat resistance is provided. The organometallic complex, which includes a structure represented by General Formula (G1), includes iridium and a ligand. The ligand has a pyrazine skeleton. Iridium is bonded to nitrogen at the 1-position of the pyrazine skeleton. A phenyl group that has an alkyl group as a substituent is bonded at each of the 2- and 3-positions of the pyrazine skeleton, and a phenyl group that has a cyano group as a substituent is bonded at the 5-position of the pyrazine skeleton. The ortho position of the phenyl group bonded at the 2-position of the pyrazine skeleton is bonded to iridium.
In the formula, each of A1 to A4 independently represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. Each of R1 to R6 independently represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. Each of R7 to R11 independently represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms, and a cyano group. At least one of R7 to R11 represents a cyano group.
Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
申请人:Semiconductor Energy Laboratory Co., Ltd.
公开号:US20170025615A1
公开(公告)日:2017-01-26
Provided is a light-emitting element including a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than that of the second organic compound. The HOMO level of the first organic compound is lower than that of the second organic compound. The LUMO level of the guest material is higher than that of the first organic compound. The HOMO level of the guest material is higher than that of the second organic compound. An energy difference between the LUMO level and the HOMO level of the guest material is larger than an energy difference between the LUMO level of the first organic compound and the HOMO level of the second organic compound. The guest material can convert triplet excitation energy into light emission. The combination of first organic compound and the second organic compound can form an exciplex.