A composition of terminal-modified imide oligomers is disclosed. The composition comprises a flexible terminal-modified imide oligomer (A) and a rigid terminal-modified imide oligomer (B). The flexible terminal-modified imide oligomer (A) is selected from specific oligomers (I) and (II). The rigid terminal-modified imide oligomer (B) is selected from specific oligomers (III) and (IV). The oligomer (I) is formed from biphenyltetracarboxylic acid or its derivative, an aromatic diamine compound (a) and an unsaturated monoamine compound or an unsaturated carboxylic acid or its derivative. The oligomer (II) is formed from biphenyltetracarboxylic acid or its derivative and an unsaturated monoamine compound. The oligomer (III) is formed from biphenyltetracarboxylic acid or its derivative, an aromatic diamine compound (b) and an unsaturated monoamine compound or an unsaturated carboxylic acid or its derivative. The oligomer (IV) is formed from pyromellitic acid or its derivative, an aromatic diamine compound (c) and an unsaturated monoamine compound or an unsaturated carboxylic acid or its derivative. The aromatic diamine compound (a) has two or more aromatic rings which are combined with each other directly or by a divalent group consisting of one, two or three atoms. The aromatic diamine compound (b) has only one aromatic ring or condensed ring. The aromatic diamine compound (c) may have two or more aromatic rings as is defined in the compound (a), or may have only one aromatic ring or condensed ring as is defined in the compound (b).
Oxidation, thermolysis, and photolysis of diarylsulphamides
作者:D. L. Forster、T. L. Gilchrist、C. W. Rees
DOI:10.1039/j39710000993
日期:——
new aromatic rearrangement. The photolysis of the arylsulphamides and the thermolysis of their NN′-dichloro-derivatives do give azo compounds, however. The photochemical reaction appears to be intramolecular, possibly involving extrusion of sulphur dioxide as the first step.