摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5,7,4'-trihydroxyflavanone N-phenyl hydrazone | 1334290-11-7

中文名称
——
中文别名
——
英文名称
5,7,4'-trihydroxyflavanone N-phenyl hydrazone
英文别名
——
5,7,4'-trihydroxyflavanone N-phenyl hydrazone化学式
CAS
1334290-11-7
化学式
C21H18N2O4
mdl
——
分子量
362.385
InChiKey
JSXDKHOUGRXYDU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

反应信息

  • 作为反应物:
    描述:
    5,7,4'-trihydroxyflavanone N-phenyl hydrazone乙酰氯三乙胺 作用下, 以 四氢呋喃 为溶剂, 反应 0.34h, 以91.3%的产率得到5-hydroxy-7,4'-diacetoxyflavanone-N-phenyl hydrazone
    参考文献:
    名称:
    A Synthetic Naringenin Derivative, 5-Hydroxy-7,4′-diacetyloxyflavanone-N-phenyl Hydrazone (N101-43), Induces Apoptosis through Up-regulation of Fas/FasL Expression and Inhibition of PI3K/Akt Signaling Pathways in Non-Small-Cell Lung Cancer Cells
    摘要:
    Naringenin, a well-known naturally occurring flavonone, demonstrates cytotoidcity in a variety of human cancer cell lines; its inhibitory effects on tumor growth have spurred interest in its therapeutic application. In this study, naringenin was derivatized to produce more effective small-molecule inhibitors of cancer cell proliferation, and the anticancer effects of its derivative, 5-hydroxy-7,4'-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), in non-small-cell lung cancer (NSCLC) cell lines NCI-H460, A549, and NCI-H1299 were investigated. Naringenin itself possesses no cytotoxicity against lung cancer cells. In contrast, N101-43 inhibits proliferation of both NCI-H460 and A549 cell lines; this capacity is lost in p53-lacking NCI-H1299 cells. N101-43 induces apoptosis via sub-G(1) cell-cycle arrest in NCI-H460 and via G(0)/G(1) arrest in A549 cells. Expression of apoptosis and cell-cycle regulatory factors is altered: Cyclins A and D1 and phospho-pRb are down-regulated, but expression of CDK inhibitors such as p21, p27, and p53 is enhanced by N101-43 treatment; N101-43 also increases expression levels of the extrinsic death receptor Fas and its binding partner FasL. Furthermore, N101-43 treatment diminishes levels of cell survival factors such as PI3K and p-Akt dose-dependently, and N101-43 additionally induces cleavage of the pro-apoptotic factors caspase-3, caspase-8, and poly ADP-ribose polymerase (PARP). Cumulatively, these investigations show that the naringenin derivative N101-43 induces apoptosis via up-regulation of Fas/FasL expression, activation of caspase cascades, and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 and A549 cells. In conclusion, these data indicate that N101-43 may have potential as an anticancer agent in NSCLC.
    DOI:
    10.1021/jf2017594
  • 作为产物:
    描述:
    柚皮素苯肼溶剂黄146 作用下, 以 乙醇 为溶剂, 反应 36.0h, 以79.7%的产率得到5,7,4'-trihydroxyflavanone N-phenyl hydrazone
    参考文献:
    名称:
    A Synthetic Naringenin Derivative, 5-Hydroxy-7,4′-diacetyloxyflavanone-N-phenyl Hydrazone (N101-43), Induces Apoptosis through Up-regulation of Fas/FasL Expression and Inhibition of PI3K/Akt Signaling Pathways in Non-Small-Cell Lung Cancer Cells
    摘要:
    Naringenin, a well-known naturally occurring flavonone, demonstrates cytotoidcity in a variety of human cancer cell lines; its inhibitory effects on tumor growth have spurred interest in its therapeutic application. In this study, naringenin was derivatized to produce more effective small-molecule inhibitors of cancer cell proliferation, and the anticancer effects of its derivative, 5-hydroxy-7,4'-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), in non-small-cell lung cancer (NSCLC) cell lines NCI-H460, A549, and NCI-H1299 were investigated. Naringenin itself possesses no cytotoxicity against lung cancer cells. In contrast, N101-43 inhibits proliferation of both NCI-H460 and A549 cell lines; this capacity is lost in p53-lacking NCI-H1299 cells. N101-43 induces apoptosis via sub-G(1) cell-cycle arrest in NCI-H460 and via G(0)/G(1) arrest in A549 cells. Expression of apoptosis and cell-cycle regulatory factors is altered: Cyclins A and D1 and phospho-pRb are down-regulated, but expression of CDK inhibitors such as p21, p27, and p53 is enhanced by N101-43 treatment; N101-43 also increases expression levels of the extrinsic death receptor Fas and its binding partner FasL. Furthermore, N101-43 treatment diminishes levels of cell survival factors such as PI3K and p-Akt dose-dependently, and N101-43 additionally induces cleavage of the pro-apoptotic factors caspase-3, caspase-8, and poly ADP-ribose polymerase (PARP). Cumulatively, these investigations show that the naringenin derivative N101-43 induces apoptosis via up-regulation of Fas/FasL expression, activation of caspase cascades, and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 and A549 cells. In conclusion, these data indicate that N101-43 may have potential as an anticancer agent in NSCLC.
    DOI:
    10.1021/jf2017594
点击查看最新优质反应信息