4-Hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one Induces Mitochondrial Dysfunction and Apoptosis upon Its Intracellular Oxidation
摘要:
We investigated the mechanism of cell death induced by a furoquinolinone derivative, namely, 4-hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one (HOFQ), in the dark. Mitochondrial depolarization was found to be a causative event in HOFQ-induced apoptosis that was blunted either by replacing the 4-hydroxymethyl group with a methyl one, or by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase (ADH). In vitro enzymatic assay demonstrated that HOFQ is a substrate of ADH. In isolated mitochondria HOFQ was without effect, whereas in the presence of ADH and NAD+ it caused the opening of the permeability transition pore, indicating that HOFQ-oxidized products affect mitochondrial function directly. Finally, an analogue bearing the formyl group at the C-4 position mimicked all the effects exerted by HOFQ In conclusion, these results suggest that the direct action on mitochondria of HOFQ-oxidized products are responsible for their cytotoxicity, which might be exacerbated, but hardly determined, by photodynamic action and/or binding to DNA.
4-Hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one Induces Mitochondrial Dysfunction and Apoptosis upon Its Intracellular Oxidation
摘要:
We investigated the mechanism of cell death induced by a furoquinolinone derivative, namely, 4-hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one (HOFQ), in the dark. Mitochondrial depolarization was found to be a causative event in HOFQ-induced apoptosis that was blunted either by replacing the 4-hydroxymethyl group with a methyl one, or by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase (ADH). In vitro enzymatic assay demonstrated that HOFQ is a substrate of ADH. In isolated mitochondria HOFQ was without effect, whereas in the presence of ADH and NAD+ it caused the opening of the permeability transition pore, indicating that HOFQ-oxidized products affect mitochondrial function directly. Finally, an analogue bearing the formyl group at the C-4 position mimicked all the effects exerted by HOFQ In conclusion, these results suggest that the direct action on mitochondria of HOFQ-oxidized products are responsible for their cytotoxicity, which might be exacerbated, but hardly determined, by photodynamic action and/or binding to DNA.
4-Hydroxymethyl-1,6,8-trimethylfuro[2,3-<i>h</i>]quinolin-2(1<i>H</i>)-one Induces Mitochondrial Dysfunction and Apoptosis upon Its Intracellular Oxidation
作者:Adriana Chilin、Giuliano Dodoni、Christian Frezza、Adriano Guiotto、Vera Barbieri、Fabio Di Lisa、Marcella Canton
DOI:10.1021/jm0493919
日期:2005.1.1
We investigated the mechanism of cell death induced by a furoquinolinone derivative, namely, 4-hydroxymethyl-1,6,8-trimethylfuro[2,3-h]quinolin-2(1H)-one (HOFQ), in the dark. Mitochondrial depolarization was found to be a causative event in HOFQ-induced apoptosis that was blunted either by replacing the 4-hydroxymethyl group with a methyl one, or by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase (ADH). In vitro enzymatic assay demonstrated that HOFQ is a substrate of ADH. In isolated mitochondria HOFQ was without effect, whereas in the presence of ADH and NAD+ it caused the opening of the permeability transition pore, indicating that HOFQ-oxidized products affect mitochondrial function directly. Finally, an analogue bearing the formyl group at the C-4 position mimicked all the effects exerted by HOFQ In conclusion, these results suggest that the direct action on mitochondria of HOFQ-oxidized products are responsible for their cytotoxicity, which might be exacerbated, but hardly determined, by photodynamic action and/or binding to DNA.