Synthesis of α- and β-d-(1→6)-C-Disaccharides by Wittig Olefination of Formyl C-Glycosides with Glycopyranose 6-Phosphoranes
摘要:
The synthesis of (1-->6)-C-disaccharides by Wittig condensation of formyl C-glycofuranosides and pyranosides with galacto-and glucopyranose B-phosphoranes is described herein. The method involves the coupling of the sugar aldehydes with the ylides and the reduction of the double bond of the resulting sugar alkenes, in most of the cases by catalytic hydrogenation. The reduction with nickel boride or diimide is employed in some special cases. O-Benzyl protective groups are removed by catalytic hydrogenation either in the course of the reduction of the double bond or in a subsequent step, while O-isopropylidene groups are cleaved by treatment with Amberlite IR-120. In this way, eight free beta-D-(1-->6)-C-disaccharides have been prepared in 26-61% overall yield starting from B-linked formyl C-glycosides. These include C-linked analogues of the biologically active disaccharides allolactose (Gal beta 1,6Glc), gentiobiose (Glc beta 1,6Glc), and N-acetylamino disaccharides (GalNHAc beta,6Gal and GalNHAc beta 1,6Glc). Moreover, the synthesis of two alpha-D-(1-->6)-C-disaccharides is described from formyl C-furanosides. The limiting condition of the synthesis of these stereoisomers is the configurational instability of the alpha-linked formyl C-glycosides under the basic conditions of the Wittig olefination.
<i>C</i>-Glycosyl Aldehydes: Synthons for <i>C</i>-Linked Disaccharides
作者:William R. Kobertz、Carolyn R. Bertozzi、Mark D. Bednarski
DOI:10.1021/jo9517095
日期:1996.1.1
Synthesis of α- and β-<scp>d</scp>-(1→6)-<i>C</i>-Disaccharides by Wittig Olefination of Formyl <i>C</i>-Glycosides with Glycopyranose 6-Phosphoranes
作者:Alessandro Dondoni、Helene M. Zuurmond、Alessia Boscarato
DOI:10.1021/jo971177n
日期:1997.11.1
The synthesis of (1-->6)-C-disaccharides by Wittig condensation of formyl C-glycofuranosides and pyranosides with galacto-and glucopyranose B-phosphoranes is described herein. The method involves the coupling of the sugar aldehydes with the ylides and the reduction of the double bond of the resulting sugar alkenes, in most of the cases by catalytic hydrogenation. The reduction with nickel boride or diimide is employed in some special cases. O-Benzyl protective groups are removed by catalytic hydrogenation either in the course of the reduction of the double bond or in a subsequent step, while O-isopropylidene groups are cleaved by treatment with Amberlite IR-120. In this way, eight free beta-D-(1-->6)-C-disaccharides have been prepared in 26-61% overall yield starting from B-linked formyl C-glycosides. These include C-linked analogues of the biologically active disaccharides allolactose (Gal beta 1,6Glc), gentiobiose (Glc beta 1,6Glc), and N-acetylamino disaccharides (GalNHAc beta,6Gal and GalNHAc beta 1,6Glc). Moreover, the synthesis of two alpha-D-(1-->6)-C-disaccharides is described from formyl C-furanosides. The limiting condition of the synthesis of these stereoisomers is the configurational instability of the alpha-linked formyl C-glycosides under the basic conditions of the Wittig olefination.