Since the identification of the dopamine D(4) receptor subtype and speculations about its possible involvement in schizophrenia, much work has been put into development of selective D(4) ligands. These selective ligands may be effective antipsychotics without extrapyramidal side effects. This work describes the synthesis of a newseries of 2,4-disubstituted morpholines and 2,4-disubstituted 1,4-oxazepanes
Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols
作者:Wei Ma、Xiaohui Zhang、Juan Fan、Yuxuan Liu、Weijun Tang、Dong Xue、Chaoqun Li、Jianliang Xiao、Chao Wang
DOI:10.1021/jacs.9b05221
日期:2019.8.28
nonpolar solvent, features exclusive anti-Markovnikov selectivity, broad substrate scope (>70 examples), and good functional group tolerance. The reaction could be performed at gram scale and applied to the synthesis of drug molecules and heterocyclic compounds. When chiral substrates are used, the stereochemistry and enantiomeric excess are retained. Further application of the chemistry is seen in the
This study describes the novel utility of cyclic sulfamidite as a simultaneous protectinggroup for 1,2- or 1,3-amino alcohols. An exceptionally mild and neutral condition for the removal of the cyclic sulfamidite was developed. The deprotection condition demonstrated a broad range of functional-group compatibility, including a substrate bearing a Z-enyne structure without any loss of double-bond stereochemistry
Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C–H Alkylation
作者:Yong Wang、Xin Wen、Xin Cui、X. Peter Zhang
DOI:10.1021/jacs.8b01662
日期:2018.4.11
use of unsaturated substrates. Guided by the concept of metalloradicalcatalysis, a different mode of radical cyclization that can employ saturated C-H substrates is demonstrated through the development of a Co(II)-based system for catalytic activation of aliphatic diazo compounds for enantioselective radical alkylation of various C(sp3)-H bonds. It allows for efficient construction of chiral pyrrolidines
自由基环化代表了构建环状结构的强大策略。传统的自由基环化以自由基加成为关键步骤,需要使用不饱和底物。在金属自由基催化概念的指导下,通过开发基于Co(II)的系统,展示了一种可以使用饱和CH底物的不同自由基环化模式,该系统用于催化活化脂肪族重氮化合物,以实现各种C(sp3)的对映选择性自由基烷基化)-H键。它可以有效构建手性吡咯烷和其他有价值的五元环状化合物。这种自由基环化的替代策略提供了一种新的逆合成范例,通过 CH 和 C=O 元素的结合形成 CC 键,从容易获得的开链醛制备五元环状分子。