Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation
摘要:
The persistence of latent reservoirs of HIV-1 represents a major barrier to virus eradication in patients treated with antiretrovirals. Prostratin is a non-tumor promoting 12-deoxyphorbol monoester capable of up-regulating viral expression from latent provirus and therefore is potentially useful for HIV adjuvant therapy and similar properties might be elicited by related non-tumor promoting phorboids. We have therefore investigated a series of phorbol 13-monoesters for their capacity to reactivate HIV latency. Using a Jurkat T cell line containing latent HIV proviruses, we found that prostratin and phorbol-13-stearate effectively activate HIV-1 gene expression in these latently infected cells, with phorbol-13-stearate being at least 10-fold more potent than prostratin, and its activity rapidly decreasing with a shortening of the acyl side chain. We further demonstrated that phorbol-13-stearate and prostratin stimulate IKK-dependent phosphorylation and degradation of I kappa B alpha, leading to activation of NF-kappa B. Moreover, prostratin, phorbol-13-hexanoate and phorbol-13-stearate also activate the JNK and ERK pathways. Studies with isoform-specific PKC inhibitors suggest that the classical PKCs play a prominent role in the responses elicited by phorbol-13-stearate. Nevertheless, this compound induces a translocation pattern of the PKC isotypes alpha and delta to cellular compartments distinctly different from that elicited by prostratin and PMA. (c) 2007 Elsevier Inc. All rights reserved.
The persistence of latent reservoirs of HIV-1 represents a major barrier to virus eradication in patients treated with antiretrovirals. Prostratin is a non-tumor promoting 12-deoxyphorbol monoester capable of up-regulating viral expression from latent provirus and therefore is potentially useful for HIV adjuvant therapy and similar properties might be elicited by related non-tumor promoting phorboids. We have therefore investigated a series of phorbol 13-monoesters for their capacity to reactivate HIV latency. Using a Jurkat T cell line containing latent HIV proviruses, we found that prostratin and phorbol-13-stearate effectively activate HIV-1 gene expression in these latently infected cells, with phorbol-13-stearate being at least 10-fold more potent than prostratin, and its activity rapidly decreasing with a shortening of the acyl side chain. We further demonstrated that phorbol-13-stearate and prostratin stimulate IKK-dependent phosphorylation and degradation of I kappa B alpha, leading to activation of NF-kappa B. Moreover, prostratin, phorbol-13-hexanoate and phorbol-13-stearate also activate the JNK and ERK pathways. Studies with isoform-specific PKC inhibitors suggest that the classical PKCs play a prominent role in the responses elicited by phorbol-13-stearate. Nevertheless, this compound induces a translocation pattern of the PKC isotypes alpha and delta to cellular compartments distinctly different from that elicited by prostratin and PMA. (c) 2007 Elsevier Inc. All rights reserved.