摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Tetradecanoic acid (2-ethoxy-3-hydroxy-propyl)-amide | 688802-58-6

中文名称
——
中文别名
——
英文名称
Tetradecanoic acid (2-ethoxy-3-hydroxy-propyl)-amide
英文别名
——
Tetradecanoic acid (2-ethoxy-3-hydroxy-propyl)-amide化学式
CAS
688802-58-6
化学式
C19H39NO3
mdl
——
分子量
329.524
InChiKey
CHRMQNGPMBIQSA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.2
  • 重原子数:
    23.0
  • 可旋转键数:
    17.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.95
  • 拓扑面积:
    58.56
  • 氢给体数:
    2.0
  • 氢受体数:
    3.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Tetradecanoic acid (2-ethoxy-3-hydroxy-propyl)-amide吡啶 作用下, 以 四氢呋喃乙醚氯仿异丙醇 为溶剂, 反应 10.0h, 生成
    参考文献:
    名称:
    Structure−Activity Relationship for Enhancement of Paracellular Permeability across Caco-2 Cell Monolayers by 3-Alkylamido-2-alkoxypropylphosphocholines
    摘要:
    Paracellular permeability enhancers have been used to improve the oral bioavailability of hydrophilic drugs; however, the mechanism of action of many enhancers is poorly understood. In this study, highly potent enhancers of paracellular permeability were identified in the 3-alkylamido-2-alkoxypropylphosphocholine series, and a structure-activity relationship was developed for enhancement of paracellular permeability across Caco-2 cell monolayers. Compounds with short (<5 carbons) hydrocarbon chains at both C-2 and C-3 were generally inactive. The potency exhibited a parabolic relationship with respect to the chain length at either C-2 or C-3. Linear molecules (i.e., compounds with a short hydrocarbon chain at C-2 or C-3 and a long hydrocarbon chain on C-3 or C-2, respectively) were more potent than the corresponding branched molecules with the same carbon load. The efficacy of 3-alkylamido2-alkoxypropylphosphocholines as enhancers of paracellular permeability was not dependent on their existence in micellar form or their ability to alter the fluidity of cell membrane. Previously, a correlation-between the potency of alkylphosphocholines as enhancers of paracellular permeability and the inhibitors of phospholipase C (PLC) was established in Madine Darby canine kidney (MDCK) cell monolayers. The potencies of selected 3-alkylamido-2-alkoxypropylphosphocholines as inhibitors of PLC and enhancers of paracellular permeability fit well into this correlation. Therefore, phosphocholines are likely to increase paracellular permeability by modulating the signal transduction pathway initiated by a PLC-catalyzed reaction rather than by physically altering the cell membrane.
    DOI:
    10.1021/jm020001x
  • 作为产物:
    描述:
    肉豆蔻酰氯吡啶甲醇 、 sodium hydride 、 对甲苯磺酸 作用下, 以 四氢呋喃二氯甲烷N,N-二甲基甲酰胺 为溶剂, 反应 25.0h, 生成 Tetradecanoic acid (2-ethoxy-3-hydroxy-propyl)-amide
    参考文献:
    名称:
    Structure−Activity Relationship for Enhancement of Paracellular Permeability across Caco-2 Cell Monolayers by 3-Alkylamido-2-alkoxypropylphosphocholines
    摘要:
    Paracellular permeability enhancers have been used to improve the oral bioavailability of hydrophilic drugs; however, the mechanism of action of many enhancers is poorly understood. In this study, highly potent enhancers of paracellular permeability were identified in the 3-alkylamido-2-alkoxypropylphosphocholine series, and a structure-activity relationship was developed for enhancement of paracellular permeability across Caco-2 cell monolayers. Compounds with short (<5 carbons) hydrocarbon chains at both C-2 and C-3 were generally inactive. The potency exhibited a parabolic relationship with respect to the chain length at either C-2 or C-3. Linear molecules (i.e., compounds with a short hydrocarbon chain at C-2 or C-3 and a long hydrocarbon chain on C-3 or C-2, respectively) were more potent than the corresponding branched molecules with the same carbon load. The efficacy of 3-alkylamido2-alkoxypropylphosphocholines as enhancers of paracellular permeability was not dependent on their existence in micellar form or their ability to alter the fluidity of cell membrane. Previously, a correlation-between the potency of alkylphosphocholines as enhancers of paracellular permeability and the inhibitors of phospholipase C (PLC) was established in Madine Darby canine kidney (MDCK) cell monolayers. The potencies of selected 3-alkylamido-2-alkoxypropylphosphocholines as inhibitors of PLC and enhancers of paracellular permeability fit well into this correlation. Therefore, phosphocholines are likely to increase paracellular permeability by modulating the signal transduction pathway initiated by a PLC-catalyzed reaction rather than by physically altering the cell membrane.
    DOI:
    10.1021/jm020001x
点击查看最新优质反应信息