Latent acetonylation of α,β -enones with allyltrimethylsilane or 2-methyl-2-propenyltrimethylsilane: synthesis of 1,5-diketones and annelation to fused cyclohexenones
The first direct preparation of allylbarium reagents by reaction of insitu generated reactive barium with various allylic chlorides and their new and unexpected selective allylation reactions with carbonyl compounds are disclosed. Highly reactive barium was readily prepared by the reduction of barium iodide with 2 equiv of lithium biphenylide in dry THF at room temperature. A variety of carbonyl compounds reacted with barium reagents generated from (E)- or (Z)-allylic chlorides in THF at -78 degrees C. All reactions resulted in high yields with remarkable alpha-selectivities not only with aldehydes but also with ketones. The double bond geometry of the starting allylic chloride was completely retained in each case. Stereochemically homogeneous (E)- and (Z)beta,gamma-unsaturated carboxylic acids were easily prepared in good yields by highly alpha-selective carboxylation of allylic barium reagents with carbon dioxide. A selective Michael addition reaction with alpha,beta-unsaturated cycloalkanone was also achieved using an allylbarium reagent. Treatment of 2-cyclopentenone (1 equiv) with allylbarium chloride (2 equiv) in THF at -78 degrees C for 20 min afforded 3-allylcyclopentanone in 94% yield with a 1,4/1,2 ratio of >99/1. Furthermore, the in situ generated barium enolate was efficiently trapped with various kinds of electrophiles (Me(2)C=CHCH2Br, (C5H11CHO)-C-n, and CH3COCl).
Determination of the Relative Rates of Formation, Fates, and Structures of Triplet 1,4-Biradicals Generated in the Photochemical Cycloaddition Reactions of 2-Cyclopentenones with 2-Methylpropene
作者:David Andrew、Alan C. Weedon
DOI:10.1021/ja00126a005
日期:1995.5
The structures and relative rates of formation of the isomeric triplet 1,4-biradical intermediates generated in the photocycloaddition reactions between 2-methylpropene and each of 2-cyclopentenone, 2-methyl-2-cyclopentenone, and 3-methyl-2-cyclopentenone were determined. This was accomplished by using hydrogen selenide as a hydrogen atom donor to trap quantitatively the 1,4-biradicals formed in each reaction, The quantum yields of cycloadduct formation in the photocycloaddition reactions were measured as a function of alkene concentration. For each reaction the relative rates of formation of the biradicals and the quantum yield data were combined to determine quantitatively how each biradical partitions between closure (or disproportionation) to product and fragmentation to ground state enone and alkene. It is concluded that the regiochemistry of the enone-alkene photocycloaddition reactions studied is dominated by the manner in which the biradical intermediates partition between products and ground state precursors and not by the relative rates at which they are formed. It is also concluded that methyl substitution at the 3-position of cyclopentenone has little effect on either the relative rates of formation of the various isomeric biradical intermediates or the manner in which they partition between products and starting materials. However, methyl substitution at the 2-position of cyclopentenone slows formation of biradicals in which the alkene is bonded to the enone 2-position and also inhibits closure to cyclobutane products of biradicals formed by bonding of the alkene to the 3-position of the enone. These results can be rationalized if it is assumed that the enone triplet excited state possesses a planar carbon at the 2-position and a pyramidalized carbon at the 3-position, and if it is also assumed that in the biradicals, radical centers at the cyclopentanone 2-position are planar and at the 3-position are pyramidalized.
CONJUGATE ALLYLATION OF a,b-UNSATURATED KETONES WITH ALLYLSILANES: 4-PHENYL-6-HEPTEN-2-ONE