Development of an Aryloxazole Class of Hepatitis C Virus Inhibitors Targeting the Entry Stage of the Viral Replication Cycle
摘要:
Reliance on hepatitis C virus (HCV) replicon systems and protein-based screening assays has led to treatments that target HCV viral replication proteins. The model does not encompass other viral replication cycle steps such as entry, processing, assembly and secretion, or viral host factors. We previously applied a phenotypic high-throughput screening platform based on an infectious HCV system and discovered an aryloxazole-based anti-HCV hit. Structure-activity relationship studies revealed several compounds exhibiting EC50 values below 100 nM. Lead compounds showed inhibition of the HCV pseudoparticle entry, suggesting a different mode of action from existing HCV drugs. Hit 7a and lead 7ii both showed synergistic effects in combination with existing HCV drugs. In vivo pharmacokinetics studies of Iii showed high liver distribution and long half-life without obvious hepatotoxicity. The lead compounds are promising as preclinical candidates for the treatment of HCV infection and as molecular probes to study HCV pathogenesis.
Development of an Aryloxazole Class of Hepatitis C Virus Inhibitors Targeting the Entry Stage of the Viral Replication Cycle
摘要:
Reliance on hepatitis C virus (HCV) replicon systems and protein-based screening assays has led to treatments that target HCV viral replication proteins. The model does not encompass other viral replication cycle steps such as entry, processing, assembly and secretion, or viral host factors. We previously applied a phenotypic high-throughput screening platform based on an infectious HCV system and discovered an aryloxazole-based anti-HCV hit. Structure-activity relationship studies revealed several compounds exhibiting EC50 values below 100 nM. Lead compounds showed inhibition of the HCV pseudoparticle entry, suggesting a different mode of action from existing HCV drugs. Hit 7a and lead 7ii both showed synergistic effects in combination with existing HCV drugs. In vivo pharmacokinetics studies of Iii showed high liver distribution and long half-life without obvious hepatotoxicity. The lead compounds are promising as preclinical candidates for the treatment of HCV infection and as molecular probes to study HCV pathogenesis.
Synthesis and Structure–Activity Relationships of Novel Zwitterionic Compounds as Peroxisome Proliferator Activated Receptor α/γ Dual Agonists with Improved Physicochemical Properties
We describe herein the design, syntheses and structure-activity relationships (SAR) of novel zwitterionic compounds as non-thiazolidinedion (TZD) based peroxisome proliferator activated receptor (PPAR) α/γ dual agonists. In the previous report, we obtained compound 1 showing potent PPARα/γ dual agonistic activities, together with a great glucose lowering effect in the db/db mice. However, this compound