摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3',5'-dichloro-2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranoside | 257621-52-6

中文名称
——
中文别名
——
英文名称
3',5'-dichloro-2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranoside
英文别名
[(2R,3R,4S,5R,6S)-6-(2-acetyl-4,6-dichloro-3-hydroxyphenoxy)-3,4,5-triacetyloxyoxan-2-yl]methyl acetate
3',5'-dichloro-2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranoside化学式
CAS
257621-52-6
化学式
C22H24Cl2O12
mdl
——
分子量
551.331
InChiKey
AOJXGZUXYUPRLF-JLMLEOCNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.6
  • 重原子数:
    36
  • 可旋转键数:
    12
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    161
  • 氢给体数:
    1
  • 氢受体数:
    12

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3',5'-dichloro-2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranoside 在 platinum on activated charcoal 4-二甲氨基吡啶氢氧化钾 作用下, 以 乙醇 为溶剂, 反应 25.17h, 生成 3-(benzo[b]furan-5-yl)-3',5'-dichloro-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-β-D-glucopyranoside
    参考文献:
    名称:
    Na+-Glucose Cotransporter (SGLT) Inhibitors as Antidiabetic Agents. 4. Synthesis and Pharmacological Properties of 4‘-Dehydroxyphlorizin Derivatives Substituted on the B Ring
    摘要:
    In our studies of Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents, a series of novel 4'-dehydroxyphlorizin derivatives substituted on the B ring was prepared and their effects on urinary glucose excretion were evaluated in rats. Introduction of only a small alkyl group at the 4'-position increased the activity, and 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-beta-D-glucopyranoside (4) showed the most potent effect. To overcome hydrolysis of compound 4 by beta-glucosidase in the digestive tract, the OH groups on the glucose moiety of compound 4 were modified. Three prodrugs (5, 42, and 55) were more potent than the parent compound 4 by oral administration, and finally 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-(6-O-methoxycarbonyl-beta-D-glucopyranoside) (5) was selected as a new promising candidate. Compound 5 was metabolized mainly by liver esterase to the active form (4), which was about 10 times more potent than 5 in inhibiting SGLT. In oral glucose tolerance test in db/db mice, compound 5 dose-dependently suppressed the elevation of glucose levels. Single administration of 5 reduced hyperglycemia concurrently with increase of glucose excretion into urine in diabetic KK-A(y) mice. Furthermore, compound 5 suppressed the elevation of blood glucose levels but did not lower it below the normal level even in fasted conditions in KK-A(y) mice. Additionally, long-term treatment with 5 dose-dependently reduced hyperglycemia and HbA1c in KK-A(y) mice. These pharmacological data strongly suggest that compound 5 has a therapeutic potential in the treatment of NIDDM.
    DOI:
    10.1021/jm990175n
  • 作为产物:
    描述:
    2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranosideN-氯代丁二酰亚胺 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 10.0h, 以63%的产率得到3',5'-dichloro-2',6'-dihydroxyacetophenone 2'-O-(2,3,4,6-O-tetraacetyl)-β-D-glucopyranoside
    参考文献:
    名称:
    Na+-Glucose Cotransporter (SGLT) Inhibitors as Antidiabetic Agents. 4. Synthesis and Pharmacological Properties of 4‘-Dehydroxyphlorizin Derivatives Substituted on the B Ring
    摘要:
    In our studies of Na+-glucose cotransporter (SGLT) inhibitors as antidiabetic agents, a series of novel 4'-dehydroxyphlorizin derivatives substituted on the B ring was prepared and their effects on urinary glucose excretion were evaluated in rats. Introduction of only a small alkyl group at the 4'-position increased the activity, and 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-beta-D-glucopyranoside (4) showed the most potent effect. To overcome hydrolysis of compound 4 by beta-glucosidase in the digestive tract, the OH groups on the glucose moiety of compound 4 were modified. Three prodrugs (5, 42, and 55) were more potent than the parent compound 4 by oral administration, and finally 3-(benzo[b]furan-5-yl)-2',6'-dihydroxy-4'-methylpropiophenone 2'-O-(6-O-methoxycarbonyl-beta-D-glucopyranoside) (5) was selected as a new promising candidate. Compound 5 was metabolized mainly by liver esterase to the active form (4), which was about 10 times more potent than 5 in inhibiting SGLT. In oral glucose tolerance test in db/db mice, compound 5 dose-dependently suppressed the elevation of glucose levels. Single administration of 5 reduced hyperglycemia concurrently with increase of glucose excretion into urine in diabetic KK-A(y) mice. Furthermore, compound 5 suppressed the elevation of blood glucose levels but did not lower it below the normal level even in fasted conditions in KK-A(y) mice. Additionally, long-term treatment with 5 dose-dependently reduced hyperglycemia and HbA1c in KK-A(y) mice. These pharmacological data strongly suggest that compound 5 has a therapeutic potential in the treatment of NIDDM.
    DOI:
    10.1021/jm990175n
点击查看最新优质反应信息