Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores
摘要:
Using N-(2,6-dimethyl)phenyl-2-piperidinecarboxamide (1) and N-(alpha -methylbenzyl)-2-piperidinecarboxamide (2) as structural leads, a variety of analogues were synthesised and evaluated for anticonvulsant activity in the MES test in mice. In the N-benzyl series, introduction of 3-Cl, 4-Cl, 3,4-Cl-2, or 3-CF3 groups on the aromatic ring led to an increase in MES activity. Replacement of the alpha -methyl group by either i-Pr or benzyl groups enhanced MES activity with no increase in neurotoxicity. Substitution on the piperidine ring nitrogen led to a decrease in MES activity and neurotoxicity, while reduction of the amide carbonyl led to a complete loss of activity. Movement of the carboxamide group to either the 3- or 4-positions of the piperidine ring decreased MES activity and neurotoxicity. Incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrinone nucleus led to increased neurotoxicity. In the N-(2,6-dimethyl)phenyl series, opening of the piperidine ring between the 1- and 6-positions gave the active norleucine derivative 75 (ED50 = 5.8 mg kg(-1), TD50 = 36.4 mg kg(-1), PI = 6.3). Replacement of the piperidine ring of I by cycloalkane (cyclohexane, cyclopentane, and cyclobutane) resulted in compounds with decreased MES activity and neurotoxicity, whereas replacement of the piperidine ring by a 4-pyridyl group led to a retention of MES activity with a comparable PI. Simplification of the 2-piperidinecarboxamide nucleus of 1 into a glycinecarboxamide nucleus led to about a six-fold decrease in MES activity. The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated, and compounds 50 and 75 should be useful leads in the development of agents for the treatment of tonic-clonic and partial seizures in man. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores
摘要:
Using N-(2,6-dimethyl)phenyl-2-piperidinecarboxamide (1) and N-(alpha -methylbenzyl)-2-piperidinecarboxamide (2) as structural leads, a variety of analogues were synthesised and evaluated for anticonvulsant activity in the MES test in mice. In the N-benzyl series, introduction of 3-Cl, 4-Cl, 3,4-Cl-2, or 3-CF3 groups on the aromatic ring led to an increase in MES activity. Replacement of the alpha -methyl group by either i-Pr or benzyl groups enhanced MES activity with no increase in neurotoxicity. Substitution on the piperidine ring nitrogen led to a decrease in MES activity and neurotoxicity, while reduction of the amide carbonyl led to a complete loss of activity. Movement of the carboxamide group to either the 3- or 4-positions of the piperidine ring decreased MES activity and neurotoxicity. Incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrinone nucleus led to increased neurotoxicity. In the N-(2,6-dimethyl)phenyl series, opening of the piperidine ring between the 1- and 6-positions gave the active norleucine derivative 75 (ED50 = 5.8 mg kg(-1), TD50 = 36.4 mg kg(-1), PI = 6.3). Replacement of the piperidine ring of I by cycloalkane (cyclohexane, cyclopentane, and cyclobutane) resulted in compounds with decreased MES activity and neurotoxicity, whereas replacement of the piperidine ring by a 4-pyridyl group led to a retention of MES activity with a comparable PI. Simplification of the 2-piperidinecarboxamide nucleus of 1 into a glycinecarboxamide nucleus led to about a six-fold decrease in MES activity. The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated, and compounds 50 and 75 should be useful leads in the development of agents for the treatment of tonic-clonic and partial seizures in man. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis
作者:Paige E. Piszel、Aristidis Vasilopoulos、Shannon S. Stahl
DOI:10.1002/anie.201906130
日期:2019.8.26
The aerobic Cu/ABNO catalyzed oxidative coupling of alcohols and amines is highlighted in the synthesis of amide bonds in diverse drug-like molecules (ABNO=9-azabicyclo[3.3.1]nonane N-oxyl). The robust method leverages the privileged reactivity of alcohols bearing electronegative hetero- atoms (O, F, N, Cl) in the β-position. The reaction tolerates over 20 unique functional groups and is demonstrated
申请人:National University Corporation
University Of Toyama
公开号:EP2808014A1
公开(公告)日:2014-12-03
A novel serine racemase inhibitor exhibits sufficient activity and specificity. The serine racemase inhibitor includes one or more compounds selected from compounds respectively represented by the following general formulas [MM_1], [DR_1], [DR'_1], [LW_1], and [ED_1] as an active ingredient.