Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors
摘要:
A series of dihydro-pyrazolyl-thiazolinone derivatives (5a-5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC50 of 0.5 mu M, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent. (C) 2012 Elsevier Ltd. All rights reserved.
Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors
摘要:
A series of dihydro-pyrazolyl-thiazolinone derivatives (5a-5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC50 of 0.5 mu M, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent. (C) 2012 Elsevier Ltd. All rights reserved.
A series of thienopyrimidines containing a pyrazoline unit (4a–d, 7a–d and 13a–l) were designed and synthesized. The compound 13f showed the best activity with the IC50 of 0.92 μM against PI3Kα.
N-acetyl pyrazoles including 1-(3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro- 1 H-pyrazole- 1-yl) ethanones have been synthesised by solvent free cyclization cum acetylation of chalcones like substituted styryl 3,4- dichlorophenyl ketones using hydrazine hydrate and acetic anhydride in presence of catalytic amount of fly-ash: H2SO4 catalyst. The yield of these N-acetyl pyrazole derivatives
Three series of novel thienopyrimidinederivatives 9a–l, 15a–l, and 18a–h were designed and synthesized, and their IC50 values against four cancer cell lines HepG-2, A549, PC-3, and MCF-7 were evaluated. Most compounds show moderate cytotoxicity against the tested cancer cell lines. The most promising compound 9a showed moderate activity with IC50 values of 12.32 ± 0.96, 11.30 ± 1.19, 14.69 ± 1.32
Fatty acid biosynthesis is essential for bacterial survival. FabH, beta-ketoacyl-acyl carrier protein (ACP) synthase III, is a particularly attractive target, since it is central to the initiation of fatty acid biosynthesis and is highly conserved among Gram-positive and - \negative bacteria. Fifty-six 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives were synthesized and developed as potent inhibitors of FabH. This inhibitor class demonstrates strong antibacterial activity. Escherichia coli FabH inhibitory assay and docking simulation indicated that the compounds 1-(5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl) ethanone (12) and 1-(5-(4-chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl) ethanone (13) were potent inhibitors of E. coli FabH. (C) 2010 Elsevier Ltd. All rights reserved.
Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents
Two series of pyrazole derivatives designing for potential EGFR kinase inhibitors have been discovered. Some of them exhibited significant EGFR inhibitory activity. Compound 3-(3,4-dimethylphenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (C5) displayed the most potent EGFR inhibitory activity with IC50 of 0.07 mu M, which was comparable to the positive control erlotinib. Docking simulation was performed to position compound C5 into the EGFR active site to determine the probable binding model. Antiproliferative assay results indicating that some of the pyrazole derivatives own high antiproliferative activity against MCF-7. Compound C5 showed significant antiproliferative activity against MCF-7 with IC50 of 0.08 mu M. Therefore, compound C5 with potent inhibitory activity in tumor growth inhibition would be a potential anticancer agent. (C) 2010 Elsevier Ltd. All rights reserved.