Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 2. Synthesis and Structure−Activity Relationship of Potent and Selective Cannabinoid-2 Receptor Agonists Endowed with Analgesic Activity in Vivo
摘要:
Quinolone-3-carboxamides 11 bearing at position 5, 6, 7, or 8 diverse substituents such as halides, alkyl, aryl, alkoxy, and aryloxy groups differing in their steric/electronic properties, were prepared. The new compounds were tested in vitro for CB1 and CB2 receptor affinity in comparison with the reference compounds rimonabant and SR144528. The tested compounds exhibited CB2 affinity in the ran, e from 55.9 to 0.8 nM and CB1 affinity in the range from > 10 000 to 5.3 nM, with selectivity indeces [K-i(CB1)/K-i(CB2)] varying from > 2666.6 to 1.23. On the basis of the structure-selectivity relationship developed, the presence of a substituent at C6/C8 or C7 well accounts for the high or low CB2 selectivity, respectively. Compound 11c, characterized by high CB2 affinity and selectivity, showed analgesic activity in the formalin test of acute peripheral and inflammatory pain in mice as a result of selective CB2 agonistic activity.
Evaluation of 3-Carboxy-4(1H)-quinolones as Inhibitors of Human Protein Kinase CK2
摘要:
Due to the emerging role of protein kinase CK2 as a molecule that participates not only in the development of some cancers but also in viral infections and inflammatory failures, small organic inhibitors of CK2, besides application in scientific research, may have therapeutic significance. In this paper, we present a new class of CK2 inhibitorss3-carboxy-4(1H)-quinolones. This class of inhibitors has been selected via receptor-based virtual screening of the Otava compound library. It was revealed that the most active compounds, 5,6,8-trichloro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (7) (IC50 = 0.3 mu M) and 4-oxo-1,4-dihydrobenzo[h] quinoline-3-carboxylic acid (9) (IC50 = 1 AM), are ATP competitive (K-i values are 0.06 and 0.28 mu M, respectively). Evaluation of the inhibitors on seven protein kinases shows considerable selectivity toward CK2. According to theoretical calculations and experimental data, a structural model describing the key features of 3-carboxy-4(1H)-quinolones responsible for tight binding to CK2 active site has been developed.
Evaluation of 3-Carboxy-4(1<i>H</i>)-quinolones as Inhibitors of Human Protein Kinase CK2
作者:Andriy G. Golub、Olexander Ya. Yakovenko、Volodymyr G. Bdzhola、Vladislav M. Sapelkin、Piotr Zien、Sergiy M. Yarmoluk
DOI:10.1021/jm050048t
日期:2006.11.1
Due to the emerging role of protein kinase CK2 as a molecule that participates not only in the development of some cancers but also in viral infections and inflammatory failures, small organic inhibitors of CK2, besides application in scientific research, may have therapeutic significance. In this paper, we present a new class of CK2 inhibitorss3-carboxy-4(1H)-quinolones. This class of inhibitors has been selected via receptor-based virtual screening of the Otava compound library. It was revealed that the most active compounds, 5,6,8-trichloro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (7) (IC50 = 0.3 mu M) and 4-oxo-1,4-dihydrobenzo[h] quinoline-3-carboxylic acid (9) (IC50 = 1 AM), are ATP competitive (K-i values are 0.06 and 0.28 mu M, respectively). Evaluation of the inhibitors on seven protein kinases shows considerable selectivity toward CK2. According to theoretical calculations and experimental data, a structural model describing the key features of 3-carboxy-4(1H)-quinolones responsible for tight binding to CK2 active site has been developed.
Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 2. Synthesis and Structure−Activity Relationship of Potent and Selective Cannabinoid-2 Receptor Agonists Endowed with Analgesic Activity in Vivo
Quinolone-3-carboxamides 11 bearing at position 5, 6, 7, or 8 diverse substituents such as halides, alkyl, aryl, alkoxy, and aryloxy groups differing in their steric/electronic properties, were prepared. The new compounds were tested in vitro for CB1 and CB2 receptor affinity in comparison with the reference compounds rimonabant and SR144528. The tested compounds exhibited CB2 affinity in the ran, e from 55.9 to 0.8 nM and CB1 affinity in the range from > 10 000 to 5.3 nM, with selectivity indeces [K-i(CB1)/K-i(CB2)] varying from > 2666.6 to 1.23. On the basis of the structure-selectivity relationship developed, the presence of a substituent at C6/C8 or C7 well accounts for the high or low CB2 selectivity, respectively. Compound 11c, characterized by high CB2 affinity and selectivity, showed analgesic activity in the formalin test of acute peripheral and inflammatory pain in mice as a result of selective CB2 agonistic activity.